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Summary

This research considers the mathematical representation of complex network environments
to enable network reconstruction and analysis. In this study, a complex network environment
is the interconnection of controlled dynamical systems resulting in both nonlinear and noisy
behavior as well as complicated interconnection structure. Classical representations of such
systems, such as coupled differential equations, are not effective for our purposes because they
are too detailed, resulting in a heavy information load on the experimental data required for
reconstruction. Moreover, the typical simplification found by grouping parts of the system
into well-characterized subsystems and then restricting the desired structural information to
be only the interconnection structure among subsystems is equally problematic, since even
here one must determine how to partition all system states (even the unmeasured ones) into
the right subsystems; this can be a tremendous informational burden or even impossible.

Here, we leverage a new idea about how to represent system structure to reduce the
information burden on the experimental data required for network reconstruction. In this
new representation, we look for the open-loop causal dependencies among measured vari-
ables. As a result, distinct dependencies between different variables may actually depend on
the same underlying unmeasured variable and thus be entangled. In this situation, this new
representation would not distinguish between entangled components and non-entangled com-
ponents. Nevertheless, the benefit of remaining agnostic about the potential entanglement
of system dynamics through unmeasured variables is that this new type of structure can be
derived from O(n) experiments, where n is the number of measured variables. Algorithms
for accomplishing this reconstruction are discussed, with special emphasis on how to han-
dle noise and underlying nonlinearities. Also, further theoretical analysis reveals interesting
characteristics about minimal representations of these new models and their potential for
conducting structure-dependent robustness analyses. This robustness analysis provides the
basis for exploring vulnerability and network security.

A unique strength of this work is its equal effort on both theoretical development and ex-
perimental validation. Using wireless mesh networks as an application testbed, the “network
design cycle” is employed to iteratively develop theoretical models, rate control protocols,
and experimental validation in a process that lays the foundation for the development of
a model of wireless mesh networks suitable for the new network reconstruction methods.
Although not yet complete, this work launches new possibilities for wireless mesh networks
where system intruders can be automatically detected by the way they induce coupling
among link rates in the network. This “packet-free” approach is distinct from current tech-
niques and suggests a bold new research program. Bio-chemical reaction networks provide
another testbed for theoretical validation, and that work is just emerging.

5 Introduction

The study of network environments have received considerable attention from various disci-
plines over the last 20 years. This is in part due to the rise of the internet, but it also is due
to advances in biology that have brought new kinds of networked “machines” into clear view
that contrast sharply with our solid-state, engineered systems. The research discussed here
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takes a fresh view of these new, “complex” network environments and answers fundamental
questions about 1) how to model them, 2) the design of experiments necessary to discover
their structure (and thus adapt system inputs to optimize the resulting performance), and
3) the relationship between network structure to vulnerability and attack.

Specifically, this work explores these issues in the context of both wireless mesh and bio-
chemical reaction networks. Although wildly different application areas, this research unites
theoretical work that clarifies fundamental limitations of complex networks with network
engineering and systems biology to implement specific designs and experimentally verify the
theoretical discoveries in what we call the “network design cycle.”

5.1 What is a “complex” networked environment?

The descriptor “complex” has been used in other studies to characterize networks that are
large, meaning that a graph used to represent the network has a large number of nodes.
Often the number of edges is also taken to be large and devoid of certain regular structure,
so that, for example, a tree-structured graph would not be considered “complex.” In these
studies one typically looks for hidden regularities or patterns that characterize the structure
of the graph in simple terms in spite of these other “complexities.” A typical example would
be small-world networks.

In this work, we consider different environments, where “network” refers to an inter-
connected dynamical system. In these environments, system behavior is as important a
characteristic of the network as is its structure. The descriptor “complex” then refers to
both the network behavior as well as its structure.

This work addresses networks with complex behavior by considering systems with un-
derlying nonlinear dynamics and noisy measurements. As a first step, the results presented
here leverage Lyapunov theory to apply linear analysis locally to regions near equilibria of
the underlying nonlinear system. Extending these results globally to the underlying non-
linear system is not immediately obvious and requires new thinking about the meaning of
structure, beyond that already developed in this research. As a result, global analysis is left
for future research.

This work also addresses networks with complex structure. Besides the usual definition,
of a “complex” network structure represented by a graph with a large number of nodes and
non-trivial edge patterns (e.g. allowing for arbitrarily complicated feedback relationships),
this work also makes a particular contribution by developing representation and analysis tools
applicable to networks of dynamical systems with potential hidden entanglements among un-
measured variables. This “potential entanglement” type of network complexity is previously
unaddressed in the literature, yet it becomes particularly important for inferring network
structure from behavioral data.

Appreciating the power of structural representations that allow for potential entangle-
ment among unmeasured variables to simplify network inference problems is subtle, but it
is a central contribution of this research program. Consider, for example, a network that
is composed of the interconnection of various subsystems. By definition, each subsystem’s
internal states only affect that subsystem, and the interconnection variables are themselves
measured quantities. Inferring this network “subsystem” interconnection structure from data
thus demands the discovery of the true partition of all of the system’s unmeasured states
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into their appropriate subsystem components. Discovering such a partition from measured
data can be extremely difficult or impossible. This research, on the other hand, leverages
a different representation of system structure, called signal structure, that does not rely on
the idea of subsystems and allows for potential entanglement among unmeasured states. As
a result, inferring a system’s signal structure requires much less information, and thus fewer
experiments, than inferring a system’s subsystem structure.

One contribution of this research is to thoroughly understand the relationships between
a system’s subsystem and signal structures. Often, systems with solid-state components
(such as routers in the internet) have subsystem and signal structures that are equivalent.
Sometimes, however, systems have a fluid-like character (such as bio-chemical reaction net-
works or wireless mesh networks) and the resulting subsystem and signal structures can be
very different. Characterizing informativity conditions and developing scalable algorithms
for network reconstruction (i.e. inference) of signal structure are the primary theoretical
contributions of this effort. These models of complex networked environments also facilitate
a novel robustness analysis that leads to new results about system vulnerability and secu-
rity. These contributions are highlighted when applied to complex network environments
that exhibit both the behavioral and structural complexity as described.

5.2 What is the network design cycle?

Besides the theoretical contributions of this work, this research represents an active col-
laboration between theoretical development and physical implementation and testing on
real complex networks. This collaboration is most evident in our work on wireless mesh
networks, where active modeling and protocol design efforts lead to simulation, implementa-
tion, and experimental testing on our live wireless mesh testbed. Similar collaborations for
bio-chemical reaction networks began to emerge during this study, but the implementation
and experimental testing is incomplete and part of ongoing research.

The network design cycle defines the scientific process we engage that unites our theoret-
ical and applied work. The next section discusses each part of the design cycle in detail as
part of our research methods, assumptions, and procedures. Section 7 the offers highlights
of the research program results, beginning with specific applications and ending with general
theoretical results. Sections 7.1 and 7.2 detail our development of new models for wireless
mesh networks, leading to new rate control protocols that can drastically improve network
performance. Section 7.3 and 7.4 then demonstrate our network reconstruction efforts ap-
plied to nonlinear bio-chemical reaction networks with noisy measurements. Section 7.5 then
highlights the general theoretical underpinnings regarding the meaning of structure in inter-
connected dynamical systems and the mathematical relationships among different types of
structure. Section 8 then concludes the report.

6 Methods, Assumptions, and Procedures

To address these problems, our work uses a method we call the Network Design Cycle, as
shown in Figure 1. We start by formulating a mathematical model of the network, precisely
characterizing how it operates. In a wireless network, this may involve describing how nodes
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range 0 ≤ ail ≤ 1, and is directional, meaning that ail may be significantly different from ali.
Interfering factors can be experimentally measured between any pair of links in a network
by methods suggested in [14, 16], constructing an interference map for the network. A study
shows that interfering transmissions are independent of each other, and the joint impact of
interferers to a receiving node is merely the product of their isolated impacts [14].

7.1.2 Problem Formulation

Given a contention graph with maximal cliques C and an interference map A, we formulate
an optimization problem that maximizes the sum of link utilities, which are functions of link
receiving rates, in a wireless mesh network:

P : max
s

f(r) =
∑

l∈L

U(rl) (1)

subject to:
sl ≥ 0, ∀l ∈ L, (2)

rl = dlsl
∏

i∈I(l)

(1− ailsi), ∀l ∈ L, (3)

∑

l∈L(j)

sl ≤ cj, ∀j ∈ C. (4)

We assume the utility function U of a link is continuously differentiable, strictly concave,
monotonically increasing, and approaches negative infinity as the argument approaches zero
from the right.

Assuming a logarithmic utility function, and ignoring the ratio dl because it does not
affect the optimality of our solution, we can formulate this as a convex problem P′

P′ : max f ′(s) (5)

where

f ′(s) =
∑

l∈L



ln sl +
∑

i∈F (l)

ln (1− alisl)



. (6)

subject to:
sl ≥ 0, ∀l ∈ L, (7)

∑

l∈L(j)

sl ≤ cj, ∀j ∈ C. (8)

Note that a similar formulation that optimizes flow receiving rates, rather than link
receiving rates, is not convex. Finding a convex reformulation is a part of our ongoing work.
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7.1.3 Algorithm

Because the link formulation of this problem is convex, it is straightforward to derive a
distributed algorithm to solve it, based on the methods presented in [13]. We use the gradient
projection method to iteratively obtain the optimal price, λ, for the problem. Using a step
size γ in the negative direction of the gradient gives the algorithm

λj(k + 1) = max



0,λj(k)− γ(cj −
∑

l∈L(j)

s̄l(λ(k)))



, (9)

where
s̄l(λ) = argmax

sl
g(sl,λ). (10)

and
g(sl,λ) = ln sl +

∑

i∈F (l)

ln (1− alisl)− sl
∑

j∈C(l)

λj, (11)

where F (l) is the set of all links that interfere with l and C(l) is the set of all links in a
clique with l.

This means that each link in a maximal clique can share with each other their current
rates, s̄l, which is only local information, and then compute the next price λj, which in turn
leads each link to calculate new prices. The convergence of the algorithm is well established
in the literature, even when it is asynchronous. Once λ converges to the optimal solution,
the optimal solution, s∗, is given by

s∗ = s̄(λ∗).

7.1.4 Numerical Results

We use MATLAB to demonstrate the situations in which the partial interference (PI) model
outperforms the binary interference (BI) model, and by how much. For binary interference,
we assume that the model can either model interference as contention or ignore it, depending
on which gives the largest utility. In most cases, the BI model ignores interference when it
is low and models it as contention when it is high. To compare the models, we consider
the ratio R of performance between the PI and BI models, using three topologies, each with
clique capacities of 0.85.

Figure 4a shows the first topology, where I links interfere with a single link with a
common interference factor a, but do not interfere with each other. Figure 5a shows the
performance ratio for this topology, with the dotted curve showing when R begins to be
greater than one. Interestingly, the PI model and the BI model perform exactly the same
for values of a below 0.59. This is because, for low values of a, the cost of interference is
offset by the gain of the interferer sending at full capacity. Thus, both the PI model and the
BI model calculate sending rates at full capacity for each link. For larger values of a and I,
the PI model outperforms BI more than 1.7 times.

Figure 4b shows the second topology, where a single link has interference factor a on N
links that contend in a single clique. Figure 5b plots the performance ratio for this topology,
with the dotted curve showing where R begins to be greater than one. The PI model starts
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on the interference map, forming a contention graph and enumerating maximal cliques,
(3) implementing the rate controller algorithms, and (4) scheduling flows according to the
calculated rates.

Interference Map To measure the network interference map, we use unicast transmis-
sions between pairs of nodes, similar to the method discussed by Padhye et al. [15]. The
measurement is performed in four steps:

1. Sending nodes select receivers. Each sending node selects a receiver to form two sep-
arate unicast links, say A→C and B→D. The receivers should be chosen in a way
that transmissions from one sending node do not interfere with the packet reception
of another link. This is to separate the impact of interference from contention.

2. Sending nodes take turns to transmit data to their respective receivers using unicast
at full link capacity. Receivers calculate the transmission rate. In the example, C
calculates Ra and D calculates Rb.

3. Sending nodes concurrently transmit data to their respective receivers using unicast at
full link capacity. Receivers calculate the transmission rate. In the example, C calcu-
lates Rb

a and D calculates Ra
b . The node in the superscript is the potential contending

node.

4. Receivers calculate the contention ratio. For node C, the contention ratio is defined as
Rb

a

Ra
, and D calculates the ratio as

Ra
b

Rb
. Note, the two contention ratios could be different

for asymmetric contion. Node B contends with node A if Rb
a

Ra
< 1, and similarly node

A contends with B if
Ra

b

Rb
< 1.

The above steps are repeated for each permutation of nodes of interest for contention
measurement. A pair of nodes is considered to be contending with each other if either one of
the contention ratios is less than 1, because the partial interference model assumes symmetric
contention between a pair of neighboring nodes.

The interference map is measured using a similar unicast approach. However, the inter-
fering node should be within the interference range of the receiver and outside of the carrier
sense range of the sender of the interferee link. To measure interference of node B to link
A→C, node A first transmits to C at link capacity while B remains silent, and C calculates
the receiving rate from A, Ra. In the next step, both A→C and B→D transmit at link
capacity concurrently, and C calculates the receiving rate Rb

a when transmissions from B are

present. Node B interferes with link A→C if Rb
a

Ra
< 1, and the interference factor when B

transmits at full link capacity is defined as
(

1− Rb
a

Ra

)

.

Enumerating Maximal Cliques To calculate fair rates, links need to construct their
local contention graphs and find the maximal cliques using the network interference and
contention map. Unfortunately, enumerating maximal cliques in an arbitrary graph is a
well-known NP-hard problem, and the problem is extremely difficult in dense graphs. With

9
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the binary interference model, links within interference range of each other cannot be active
concurrently. As a result, the contention graph is likely to be dense, because there are
likely a large number of interferers to a remote node. Existing graph-based proposals adopt
approximations by either over-conservatively assigning links within 2 hops apart to the same
maximal clique [2], or requiring major modifications to underlying link layer protocols [9, 5].

With the partial interference model, it is viable to design efficient and accurate protocols
that enumerate maximal the cliques in a contention graph. The work presented in [7] suggests
that efficient algorithms exist for enumerating maximal cliques in graphs that are 1) sparse
and 2) closed under the operation of taking subgraphs. The maximal cliques in the partial
interference model only consist of links with senders within the carrier sense range of each
other. In a typical wireless mesh network, the number of immediate contenders is quite
limited, and we can assume the contention graph satisfies the above two assumptions.

Accordingly, we use the Bron-Kerbosch algorithm [3] to calculate all the maximal cliques
that a link belongs to. The algorithm is executed within each node, and the CPU overhead
is trivial as compared to the wireless communication overhead. Our method is able to work
in real time as compared to previous work in the literature that conservatively assigns any
node within two hops to the same clique.

Rate Controller Algorithms When implementing the rate controller algorithms, there
are a number practical issues we must consider. First, the link-based formulation of the
partial interference model doesn’t capture what we really value – flow utility rather than
link utility. To overcome this limitation, we set a weight on each link equal to the number of
flows that traverse the link. Links with more flows will have heavier weights in the optimal
rate control, and thus be assigned more bandwidth. To prevent unfairness between flows
sharing the same link, each link equally divides the assigned bandwidth among its flows.

Second, the partial interference model is based on the assumption that each link has an
infinite backlog of packets to send, which clearly may not hold in practice. This means that
when a link is assigned a given fair rate, it may not actually be able to transmit packets
at that rate. To deal with this problem, our implementation uses the actual transmission
rates for each link when calculating prices, rather than the assigned rate. If a sending node
transmits at a lower rate than expected due to insufficient packets, the sum rate of the clique
becomes lower than the optimal target, and the clique price becomes lower, leading all links
in the clique to increase their rates. In this way, flows with sufficient packets are able to
utilize the idle channel. However, the rate allocation is unable to converge to the optimal
target, because there is always a gap between the actual and the optimal transmission rate
because of the insufficient packets.

Scheduling Flows Once the rate controller has determined the optimal rate for each link,
we need to schedule the packets for each flow traversing each link, ensuring that the total
rate of all flows on a link obey the rate limit. To do this, we use WiFu, which allows user-
space programs on a Linux system to intercept, modify, and reschedule packets as they are
forwarded. Figure 6 shows the architecture for our system.

WiFu intercepts packets using the Linux iptables software with the netfilter interface
[1]. The intercepted packets are then given to a handler, depending on where the packet was
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• Uniform random selection. For each time block T , each link has a set F ⊂ T of
available time slots in which to send, and a set X ⊂ F when it does send. Each t ∈ F
has an equal probability of being in X.

• Negligible indirect scheduling. Using the notation from the above assumption, if link i
carrier senses links j and k sending during Xj , Xk ⊂ T , respectively, then dependencies
of Xj ∪Xk on the sending times of any link l )= i, j, k is negligible.

When considering the effective rate of links j and k as perceived by link i, realistically
there may be some other link l (or even a set of other links) that cause the rates of j and
k to overlap more or less than usual, which could in turn affect how much link i can send.
The last assumption simply states that these effects are negligible. We recognize that it can
significantly impact the accuracy of the model. This concern will be addressed in future
research with empirical testing.

.2.2 Problem Formulation

In this model, the sending constraint is given by

si + Si ≤ 1, ∀i ∈ L, (12)

where
Si =

∑

p∈P(Li)

(−1)|p|−1fi(p)gi(p)h(p), (13)

fi(p) =
∏

j∈p

cijsj, (14)

gi(p) =
φi(p)

∏

j∈p φi(j)
, (15)

φi(p) = 1− si
∑

p′∈P(p)

(−1)|p
′|−1

∏

j∈p′

cji, (16)

and the independence is given by

h(p) =
∏

{i,j}∈P2(p)

(1− cij − cji + cijcji). (17)

The receiving constraint is given by

ri = di(1− Ri)si, (18)

where
Ri =

∑

p∈P(Li)

(−1)|p|−1f ′
i(p)h(p) (19)

and
f ′
i(p) =

∏

j∈p

aijsj . (20)
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In this model, P(p) is the set of all subsets of p except the empty set, and Pz(p) is the
set of all subsets of p with |p| = z.

Note that (17) is an approximation. If one link carrier senses another link completely
(cij = 1) then their random sets do not intersect. If any two random sets in p do not intersect,
then the intersection of p is empty, which means that h(p) should equal zero. Only when all
random sets are independent should it equal one.

.2.3 Numerical Results

Instances of this problem are frequently non-convex, due to the addition and subtraction
of several rational functions in Si, and due to similar reasons in Ri. We have developed a
branch and bound solution to solve the problem by successively dividing the hypercube in
which the feasible set resides into smaller regions, and evaluating lower and upper bound
functions for the optimal value in each region. The bounds on each region allow one to
conclude that some regions need not be divided further.

We use this solution to compare the performance of the first-principles model against the
PI and BI models on several kinds of topologies. To do so, we define the optimality of a
controller as

O = P ′/P ∗, (21)

where P ′ is the performance (geometric mean of receiving rates) of the controller and P ∗

is the performance (lower bound) reported by the first-principles NUM problem. Note that
O is simply the inverse of the performance ratio R used earlier. Thus an optimality of 1
equates to no performance loss despite the inaccuracies in the model with respect to partial
carrier sensing or partial interference.

For the smaller topologies, the branch and bound algorithm converged to within a differ-
ence of 0.01 performance. However, for some of the larger topologies, the algorithm took too
long to converge. We therefore will also report a certainty measure in these cases according
to (21), where P ′ is the branch and bound’s lower bound score and P ∗ is the upper bound
score. This measure tells us how much higher the true optimal score might be, and thus how
much worse the optimality of the controllers might be. If the certainty is not reported for a
particular topology, then it was very close to 1.

The binary contention graphs for the partial and binary interference models were built
based on the independence approximation (17). If two links had an independence greater
than 0.5, an edge was drawn between them. For the maximal clique model, a contention edge
also needed to be drawn for high interference values. This was done by defining a function
mimicking the independence, but using a instead of c. An edge was drawn on the maximal
clique model’s contention graph if the multiplication of the two “independence” functions (a
and c) was greater than 0.5.

When computing results over a range of interference factor values a, we omitted any
topologies such that there existed two links i and j where

aij > 1− cij. (22)

This is because such topologies cannot occur due to the relationship between a and c. If two
links carrier sense each other well, their sending rates cannot overlap much and therefore
they cannot interfere with each other much.
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problem challenges come from the necessity to deal with noisy and partial measurements (in
particular, the number of hidden/unobservable nodes and their position in the network is
unknown) taken from a nonlinear and stochastic dynamical network.

There are several tools in the literature to infer causal network structures. These tools are
mainly rooted in three fields: Bayesian inference [26, 40], information theory (ARACNe [21],
[24], [27]) and ODE methods (inferelator [22], [19], [20], [28], [37]). Details on these and
other methods can be found in several reviews of the field such as [18, 25, 30, 32, 36]. The
vast majority of network reconstruction methods produce estimates of network structure
regardless of the informativity of the underlying data. In particular, most methods pro-
duce estimates of network structure even in cases with data from only a few experiments.
Such data may not contain enough information to enable the accurate reconstruction of the
actual network, thus the obtained network estimates can be arbitrarily different from the
true network structure [25]. To compensate for lack of information in data, most methods
have heuristics that try to “guess” at the remaining information, either by specifying prior
distributions or by appealing to a priori beliefs about the nature of real biological networks,
such as looking for the sparsest network. Nevertheless, these heuristics bias the results and
lead to incorrect estimates of the network structure.

In contrast, our approach has been to identify the conditions when data is sufficiently
informative to enable accurate network reconstruction. The results indicate that even in
an ideal situation, when the underlying network is linear and time-invariant (LTI) and the
measurements are noise-free, network reconstruction is impossible without additional infor-
mation [29]. Surprisingly, this information gap is not due to a lack of data, or a deficiency
in the number of experiments, but rather it occurs because system states are only partially
observed; the information gap is present in all data sets except those that satisfy certain
experimental conditions. Our analysis identified a particular experimental protocol that sat-
isfies these necessary conditions to ensure that data will be sufficiently informative to enable
network reconstruction. This protocol suggests that:

1. A network composed of p measured species demands p experiments;

2. Each experiment requires a distinct input that independently controls a measured
specie, i.e. experimental input i must affect measured specie i and no other measured
specie except, possibly, indirectly through measured specie i.

If data acquisition experiments are not performed in this (or an equivalent) way, the network
cannot be reconstructed. Moreover, the resulting information gap is catastrophic, meaning
that any internal network structure explains the data equally well (i.e. fully decoupled, fully
connected, and everything in between). On the other hand, if some information about the
network is available a priori, as is usually the case, then these conditions can be relaxed as
explained in [29].

The work in [29], however, did not take into account the realistic scenario that typically
systems are nonlinear and data are noisy. This section extends and details earlier results in
[44] by developing an effective method to reconstruct networks in the presence of noise and
nonlinearities, assuming that the conditions for network reconstruction presented above in
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(1) and (2) have been met. Steady-state (resp. time-series) data can be used to reconstruct
the Boolean (resp. dynamical) network structure of the system.

The section is organised as follows. After a motivating example showing that input-
output data alone does not enable network reconstruction, Section 7.3.1 reviews dynamical
structure functions and gives fundamental results concerning their usefulness in the network
reconstruction problem. Section 7.3.2 presents the main results of the section regarding
robust network reconstruction from input-output data subject to noise and nonlinearities.
Finally, we conclude this section with biologically-inspired examples in Section 7.3.3.

Notation. For a matrix A ∈ CM×N , Aij ∈ C denotes the element in the ith row and
jth column while Aj ∈ CM×1 denotes its jth column. For a column vector α, α[i] denotes its
ith element. We define eTr = [0, . . . , 0, 1rth, 0, . . . , 0] ∈ R1×N . I denotes the identity matrix.
When it is clear from the context, we omit the explicit dependence of transfer functions on
the Laplace variable s, e.g. we write G instead of G(s).

Motivating example. Consider the transfer function

G(s) =
1

s+ 3

[ 1
s+1
1

s+2

]

obtained from data (partial observations) using system identification tools. For simplicity,
assume that G(s) accurately represents the input-output relation of the original system.
This transfer function is consistent with two state-space realisations ẋ = Ax + Bu, y = Cx
given by

A1 =





−1 0 1
0 −2 1
0 0 −3



 , A2 =





−2 −1 1
−1 −3 1
0 −1 −1



 ,

B1 = B2 = [0 0 1]T , and C1 = C2 = [I 0] ∈ R2×3 (i.e., the third state is hidden/non-
observable). Note that both realisations are minimal and correspond to very different net-
work structures as seen in Figure 15. This demonstrates that even in the idealised setting
(LTI system, non noise and perfect system identification), network reconstruction in the
presence of hidden/unobservable states is not possible without additional information about
the system.

.3.1 Dynamical structure functions and network reconstruction

In [29] we introduced the notion of dynamical structure functions and showed how they can
be used to obtain necessary and sufficient conditions for network reconstruction. For the
sake of clarity and completeness, we state these previously obtained results here without
proofs. We refer the interested reader to [29, 41] for the corresponding proofs.

Consider a nonlinear system ˙̄x = f(x̄, ū, w1), ȳ = h(x̄, w2) with p measured states ȳ, hid-
den states z̄ (potentially a large number of them), m inputs ū, and noises w1, w2. The system
is linearised around an equilibrium point (i.e., a point (x̄∗, ū∗) such that f(x̄∗, ū∗, 0) = 0),
and it is assumed that inputs and noises do not move the states too far from the equilibrium
point so that the linearised system is a valid approximation of the original nonlinear system.
The linearised system can be written as ẋ = Ax+Bu, y = Cx, where x = x̄− x̄∗, u = ū− ū∗

and y = h(x̄, 0) − h(x̄∗, 0). The transfer function associated with this linearised system is

21

4

APPROVED FOR PUBLIC RELEASE:  DISTRIBUTION UNLIMITED



Figure 15: The same transfer function yields two minimal realisations with very different
network structures (Left vs. Right). Pink nodes are measured, while blue nodes represent
unmeasured hidden states; the top diagram on either side reveals the complete network struc-
ture explicitly showing hidden states, while the lower diagram indicates the corresponding
casual structure captured by the dynamical structure function (edges associated with Q are
red, while those associated with P are blue). The system in the left is (A1, B1, C1) in 7.3,
and the system on the right is (A2, B2, C2). Note how completely different the two network
structures are (complete decoupled vs. fully connected) even though either realization would
be an equally valid description if all one knew about the system was its transfer function,
identified from input-output data.

given by G(s) = C(sI − A)−1B. When we have partial observations, i.e., when C = [I 0],
we partition the linearised system equation as follows

[

ẏ
ż

]

=

[

A11 A12

A21 A22

] [

y
z

]

+

[

B1

B2

]

u

y =
[

I 0
]

[

y
z

] (23)

where x = [yT zT ]T ∈ Rn, is the full state vector, y ∈ Rp is a partial measurement of the
state (we assume p > 1), z are the n− p “hidden” states, and u ∈ Rm is the control input.
We restrict our attention to situations where output measurements constitute partial state
information, i.e., p < n. Taking the Laplace transforms of the signals in (23), solving for Z,
and substituting into the Laplace transform of the first equation of yields sY = WY + V U ,
where W = A11+A12 (sI −A22)

−1A21 and V = A12 (sI −A22)
−1B2+B1. Now, letting D be

the matrix composed of the diagonal elements ofW , we write (sI −D) Y = (W −D)Y+V U .
We then obtain Y = QY + PU where

Q = (sI −D)−1 (W −D) and P = (sI −D)−1 V. (24)

Given the system (23), we define the dynamical structure function of the system to be (Q,P ).
If all the measured states are removed from the system except for Yi and Yj then the transfer
function Qij corresponds to the exact transfer function between Yj (considered as input) and
Yi (considered as output). The same holds for P in terms of Uj and Yi.
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It can be shown that G = (I −Q)−1 P (see [29]). Based on this latter relation, it can be
seen that the dynamical structure function of a system contains more information than the
transfer function, and less information than the state-space representation [29]. We can then
conclude that, with no other information about the system, neither dynamical nor Boolean
reconstruction is possible. Moreover, for any internal structure Q there is a dynamical
structure function (Q,P ) that is consistent with G, i.e., that satisfies G = (I −Q)−1 P . In
particular, this shows that the use of criteria such as sparsity or decoupledness to guide our
selection of a proposal network structure can be misleading. If one were to optimise for
decoupledness, for example, a dynamical structure (0, G) could and would always be found,
regardless of the true underlying structure. Thus, if we are to use these kinds of criteria,
they must be firmly justified a priori.

Proposition 1. [29] Given a p×m transfer function G, dynamical structure reconstruction
is possible from partial structure information if and only if p − 1 elements in each column
of (Q,P )T are known that uniquely specify the component of (Q,P ) in the nullspace of
[ GT I ].

The importance of this result is that it identifies exactly what information about a sys-
tem’s structure, beyond knowledge of its transfer function, must be obtained to be able to
recover the structure without appeal to a priori assumptions, such as sparsity, or parsimony,
etc. This enables the design of experiments targeting precisely the additional information
needed for reconstruction. In particular when p = m and G is full rank, we observe that
imposing that P is diagonal, i.e., that each input controls a measured state independently,
is sufficient for reconstruction.

Corollary 1. [29] If m = p, G is full rank, and there is no a priori information about the
internal structure of the system, Q, then the dynamical structure can be reconstructed if each
input controls a measured state independently, i.e., if, without loss of generality, the inputs
can be numbered such that P is diagonal.

.3.2 Robust network structure reconstruction

In this section, we consider the problem of robustly reconstructing dynamical network struc-
tures. Data are obtained from input-output measurements of a noisy nonlinear system.
From this type of data we aim to find the internal network structure Q associated with the
linearised system (23). To average out the noise, data-collection experiments are repeated N
times. For simplicity of exposition, we assume that no a priori information on the internal
network structure Q is available. The results still follow if some a priori information about
Q is available, and such information can typically be used to relax the experimental protocol
according to Proposition 1. Hence, data are collected according to the measurement protocol
described in the introduction:
(1) the number of distinct data-collection experiments is the same as the number of measured
species. This in particular implies that u(t), y(t) ∈ Rp ;
(2) each input ui controls first the measured state yi so that P is a p× p diagonal matrix.

In the following two subsections (7.3.2 and 7.3.2), we propose two approaches for esti-
mating the dynamical structure function (Q,P ) from measured input-output data. The first
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approach is indirect and involves estimating the transfer function G followed by computing
(Q,P ) from G. Since some information is lost in the process of estimating G, we consider a
second approach where (Q,P ) is directly estimated from data (without estimating first G).
Concerning the type of input-output data collected, we first consider time-series input-output
data and then the special case where only steady-state data are available.

Dynamical network reconstruction from identified transfer functions This section
describes a method to obtain the dynamical structure function from a transfer function
G. This transfer function was identified from noisy time-series data using standard system
identification tools [33]. According to Corollary 1, if G is full rank there is a unique Q and
diagonal P satisfying (I − Q)G = P . Since G is an approximation of the actual system,
Q and P will typically be mere approximations of the actual dynamical structure function.
Moreover, due to noise and unmodelled dynamics, it is likely that Q does not even have the
correct Boolean structure. Typically, the internal structure function Q obtained from such
a procedure will be fully connected, i.e., all non-diagonal elements of Q will be non-zero.

The main idea to solve the network reconstruction problem from noisy data is the fol-
lowing. For p measured states, Q has p2 − p unknowns. We want to quantify the smallest
distance from G (or directly from the measured data) to all possible Boolean structures (and
there are 2p

2−p of them). Some of such distances will be large revealing that the correspond-
ing Boolean structures are unlikely to be the correct structures while other will be small
making them candidates for the correct structure.

There are a number of ways to model input-output data with noise and nonlinearities. In
order to obtain a convex minimisation problem, we consider the output (could also be input)
feedback uncertainty model [43]. In this framework, the “true” system is given by (I+∆)−1G,
where ∆ represents unmodelled dynamics, including nonlinearities, and noise. Based on this
choice of dynamic uncertainty, the distance from data to a particular Boolean structure is
chosen to be ‖∆‖, in some norm, such that Q obtained from (I +∆)−1G = (I −Q)−1P has
the desired Boolean structure. We can rewrite the above equation as ∆ = GP−1(I −Q)− I.
Now, let X = P−1(I−Q). Then the Boolean structure constraint on Q can be reformulated
on X, i.e., non-diagonal zero elements in X correspond to those in Q (since Xij = P−1

ii Qij

for i )= j).
We can order all Boolean structures from 1 to 2p

2−p, and define a set Xk containing
transfer matrices that satisfy the following conditions: (i) for i )= j, Xij(s) = 0 if for the
considered kth Boolean structure Qij(s) = 0; all other Xij(s) are free variables; (ii) when
i = j, Xii(s) is a free variable. Hence, the distance from G to a particular Boolean structure
can be written as αk = infX∈Xk

‖GX − I‖2, which is a convex minimisation problem with
a careful choice of a norm. Next, we show that this problem can be cast as a least squares
optimisation problem. If we use the norm defined by ‖∆‖2 = sum of all ‖∆ij‖22, where ‖ · ‖2
stands as the L2-norm over s = jω, then using the projection theorem [39] the problem
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reduces to

αk = inf
X∈Xk

‖GX − I‖2 = inf
X∈Xk

∑

i

‖GXi − ei‖
2
2

=
∑

i

inf
Yi

‖AiYi − ei‖
2
2

=
∑

i

‖Ai(A
∗
iAi)

−1A∗
i ei − ei‖

2
2,

where Xi is the ith column of X ∈ Xk, Yi is a column vector composed of the free (i.e.,
nonzero) elements of Xi, Ai is obtained by deleting the jth columns of G when the corre-
sponding elements Xi[j] are 0 for all j, and (·)∗ denotes transpose conjugate. The infimum
is achieved by choosing Yi = (A∗

iAi)−1A∗
i ei, and A∗

iAi is always invertible since G is full rank
in Corollary 1. If experiments are repeated N times, yielding a transfer function Gi for each

experiment, then the above analysis still follows simply by letting G =
[

G1T · · · GNT
]T

.

Dynamical network reconstruction directly from time-series data The previous
sections used a two-step approach in which system identification was first used to estimate a
transfer function from measured input-output data and then, in a second step, the identified
transfer function was used to obtain a dynamical structure function representation of the
system which is optimal in terms of a particular metric. This section proposes a method
which allows identification of the optimal dynamical structure function representation di-
rectly from the measured input output data. The advantage of this direct network structure
reconstruction from data is that no information is lost during the initial transfer function
identification stage.

Due to the equivalence between dynamical uncertainty perturbations [43], we are free
to chose, without loss of generality, the type of uncertainty perturbation that best suits
our needs. For the direct method, instead of a feedback uncertainty as was considered in
the previous section, the uncertainty perturbation we are considering here is the additive
dynamic uncertainty on the output, i.e., Y = G∆(U + ∆). In this case, we think about
the “distance” in terms of how much we need to change the input (data) to fit a particular
Boolean structure. Since G∆ = (I − Q)−1P = X−1, the equality Y = G∆(U + ∆) can be
written as

∆ = XY − U,

where X ∈ Xk, for some particular Boolean network k. Recall that structural constraints
in Q can be imposed directly on X from the equality X = P−1(I − Q). We can therefore
use system identification tools for non-causal autoregression models under the structural
constraints to identify X (which might be non-causal). In this case, the distance is defined
as the maximum likelihood of the estimation problem.

Penalising connections The above methodology suffers from a crucial weakness: there
are several Boolean structures with distances smaller or equal than the distance to the
“true” network. Indeed, the extra degrees of freedom of the fully-connected network allow
its corresponding distance αk to be the smallest of all. This is similar to the noisy data
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over-fitting problem encountered in system identification where the higher the order of the
transfer function, the better the fit. The typical approach in system identification is to
penalise higher dimensions and the analogy here is to penalise extra network connections.

If the true network has l non-existent connections (l off-diagonal elements in Q are zero)
then there are 2l − 1 different Boolean networks that have a smaller or equal distance (due
to the additional degrees of freedom provided by the extra connections). When noise is
present, then the “true” network will typically have an optimal distance similar to these
other l networks. The question of how to find the “true” network thus arises. With repeated
experiments, small enough noise (i.e., large enough signal-to-noise ratio) and negligible non-
linearities, the optimal distances of those l networks are comparable, and they are typically
much smaller than those of the other networks. To try to reveal the “true” network, one
can strike a compromise between network complexity (in terms of number of connections)
and data fitness by penalising extra connections. There are several ways to do this. Here,
we consider one of the classical methods known as Akaike’s information criterion (AIC) [31],
or some of its variants such as AICc (which is AIC with a second order correction for small
sample sizes), and the Bayesian information criterion (BIC) [23].

The AIC-type approach is a test between models - a tool for model selection. Given a
data set, several competing models may be ranked according to their AIC value, with the
one having the lowest AIC being the best. From the AIC value one may typically infer that
the best models are in a tie and the rest are far worse, but it would be arbitrary to assign a
threshold above which a given model is rejected [23]. The AIC value for a particular Boolean
network Bk is defined as:

AICk = 2Lk − lnαk, (25)

where Lk is the number of (non-zero) connections in the Boolean network Bk and αk is the
optimal distance based on this parameter constraint.

Although finding the optimal distance in the second term of eq. (25) can be done effi-
ciently, the number of Boolean networks 2p

2−p grows very fast with the number of measured
states p. To find the network with the smallest distance it is thus not desirable to com-
pute the optimal distance for each possible Boolean network. Fortunately, there are ways
to reduce the number of networks that need to be considered. As we saw in the previous
section infX∈Xk

‖GX − I‖2 =
∑

i infYi
‖AiYi − ei‖22 meaning that we can solve each optimi-

sation problem separately. Since each Yi corresponds to p − 1 unknowns in the ith row of
Q, this reduces the problem to solving p2p−1 optimal distances. Finding a polynomial-time
algorithm to compute the optimal distance through this method is a subject of current inves-
tigation. When it comes to the steady-state case, [19] proposed a polynomial-time algorithm
to quickly find the ranked solutions at the expense of solution accuracy.

Boolean network reconstruction from steady-state data So far we have assumed
that time-series data are available. Frequently, however, experimentation costs and limited
resources only permit steady-state measurements. In addition, with steady-state measure-
ments it is typically possible to perform a larger number of experiments within the same
amount of time, effort and cost. As shown below, most of the connectivity of the network
together with the associated steady-state gains (and the associated positive or negative sign)
can still be reconstructed from steady-state data. However, no dynamical information will
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be obtainable. In other words, for most cases we can still recover the Boolean network from
steady-state data.

Assume that after some time of maintaining the control input concentrations at a constant
value, the measured outputs y have converged to a steady-state value. This is equivalent
(if the system is stable or quasi-stable [37]) to assuming that we can obtain G(0), i.e., G(s)
evaluated at s = 0. Now the relationship (I−Q(s))G(s) = P (s) evaluated at s = 0 becomes
(I−Q(0))G(0) = P (0). From this equation and the knowledge of G(0), all of the results given
in Sections 7.3.2 and 7.3.2 follow provided that no element of G(s) has a system zero [43] at
0. In that case, a nonzero element in the obtained Boolean network indicates the existence of
a causal relationship between the corresponding pair of nodes while a zero element indicates
the absence of such relationship.

.3.3 Biologically-inspired examples

This section illustrates with two examples the theoretical results presented in the previous
section. The corresponding sets of ordinary differential equation describing the dynamics of
the considered networks are used to generate noisy data, which are then fed to our recon-
struction algorithm in order to assess its ability to recover the correct network structure.

Single feedback loop In this first example, we consider the following nonlinear system:

ẏ1 = −y1 +
Vmax

Km + z33
+ u1 (26)

ẏ2 = −2y2 + 1.5z1 + u2 (27)

ẏ3 = −1.5y3 + 0.5z2 + u3 (28)

ż1 = 0.8y1 − 0.5z1 (29)

ż2 = 1.2y2 − 0.8z2 (30)

ż3 = 1.1y3 − 1.3z3 (31)

where Vmax = 0.5 and Km = 0.1. Equation (26) includes a nonlinear function of z3 known
as a Hill equation. It represents a negative regulation of the rate of reaction of y1 by z3. For
simplicity, all other terms are linear. In this example, p = 3, i.e., there are three measured
states (y1, y2 and y3) while the other 3 states are hidden (z1, z2 and z3). The corresponding
network is given in Figure 16(a).

Three experiments were performed. In each experiment, one input was a step while
the others were set to zero and data was collected for each of the measured species. The
experiments were repeated 3 times to average out the noise. For simplification, in this
example, only steady-state data was used. Data was obtained by numerically integrating
the differential equations in (26)-(31) and adding independent Gaussian noises. The ratios
between standard deviations and means of the steady-state data were within the range
[0.35, 1.15], which shows that noise is considerable.

Since the true network has 3 elements in Q equal to zero, there are 23 = 8 networks with
a better or equal optimal cost. Computing the corresponding distances and AICc values
for all possible Boolean structures between the three measured species, we observed that
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Figure 16: (a) Complete network with all the states. The red circles represent the measured
states while the blue circles correspond to hidden states. (b) Network of the measured states
only.

Figure 17: (a) Network representing the dynamical interaction between the 10 species be-
lieved to be responsible for the chemotactic response of Rhodobacter sphaeroides. We assume
that only species Y p

3 , Y
p
6 and “motor” are measured (circled in red). (b) Network connecting

the measured states only.

the distance decreases by an order of magnitude when we arrived at the true network. In
addition, AIC, BIC and in particular AICc are able to pick the correct network.

Chemotaxis in Rhodobacter sphaeroides This section considers the reconstruction
of the biochemical network responsible for chemotaxis in Rhodobacter sphaeroides. The
network is represented in Figure 17 (see [35, 38] for a detailed explanation of this model
and its biological interpretation). It involves 10 species dynamically interacting through
a complex set of interconnections. To illustrate our method, consider noisy data from 3
species only: Y p

3 , Y
p
6 and the “motor” (circled in red in Figure 17(a)), obtained based on

simulations of the nonlinear ordinary differential equation model proposed by [35]. We follow
our prescribed experimental protocol and, for simplification, only steady-state data are used.
Relatively large Gaussian noise was added to the collected data to simulate measurement
noise in the data set.

Based on the complete network given in Figure 17(a), the correct network to recover
is presented in Figure 17(b). Computing the corresponding distances and AICc values for
all the 26 = 64 possible Boolean networks, we observed that the network with the smallest
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AICc was not the correct network in Figure 17(b) as it was missing the Q12 link. A closer
look at the noisy steady-state data of Y p

3 (from a step input in u2) revealed an extremely
large ratio between its standard deviation and mean value (≈ 200), showing that the noise
was completely overpowering the signal. Indeed, it can be shown that Y p

6 has a very small
influence on Y p

3 since the pathway from Y p
6 to Y p

3 includes a reversible reaction with a very
small rate constant (for detail, see [42, 34]). The next set of smallest values of AICc consists
of 4 networks, including the true one. If necessary, an extra experiment can be performed
to further discriminate between these five candidate networks.

.3.4 Discussion

This section proposes a new network reconstruction method in the presence of noise and non-
linearities based on dynamical structure functions. The key idea is to find minimal distances
between the existent data and the data required to obtain particular network structures.
The method was illustrated with two biologically-oriented examples. They showed that even
in the presence of nonlinearities and considerable noise network reconstruction was possi-
ble. Eventually, when the signal to noise ratio was too small, reconstruction was no longer
possible, but that is true irrespective of the method used.

Obviously, the method has limitations with respect to nonlinearities. With stronger non-
linear terms eventually the method fails. For example, network reconstruction for oscillatory
systems is still an open problem. However, when applied to the reconstruction of various
equilibrium point models given in the literature, we observed that reconstruction was always
possible when the signal-to-noise ratio of the measured data was not too small (far less than
1).

A final note regarding the application of this methodology to real data. We have looked
throughout the literature for real data and none of the available data that we found satisfied
the conditions necessary for accurate network reconstruction. Some problems that we observe
in the literature include: 1) many publications do not include raw data (they typically only
include means and standard deviations), and many authors indicate that they no longer have
their data; 2) some microarray data do not include repeats and others were obtained using
dual channel microarrays that only give ratios between channels, making it impossible to
reliably extract gene expression intensities. One of the most promising papers was [25], which
followed our experimental protocol, and their raw data is available. We found, however, that
the data did not meet the conditions necessary for network reconstruction. In the paper, the
authors compared different network reconstruction methods only to find that none of the
methods even came close to identifying the true network. Nevertheless, because the authors
compared the results to random guessing, they report that “Reverse engineering based on
differential equations and Bayesian networks correctly inferred regulatory interactions from
experimental data.” We disagree with their conclusion, and point out that because the data
was not sufficiently informative in the first place, such a comparison is not meaningful. To
better understand the degree of the lack of information in the data, we considered all 10
subnetworks consisting of 3 nodes. The gap in distances between fully decoupled and fully
connected networks ranged from just 2% to a maximum of 70%. This shows that there is not
enough information in the data to differentiate between Boolean structures. Note that this
data was obtained from over-expression, so based on these results, we hypothesise that over-
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expressing genes saturates the translation and transcription machinery, making linearisation
a poor approximation of the actual system dynamics. Current work is exploring the design
of experiments on known systems that 1) satisfy our data collection protocol to ensure
the resulting data is sufficiently informative for network reconstruction, and 2) facilitate a
comparison of various methods so we can better understand how different techniques perform
in situations where accurate network reconstruction is, in fact, possible.

.4 Minimal realization of dynamical structure functions and its
application to network reconstruction

Recently, networks have received an increasing amount of attention. In our information-
rich world, the questions of network reconstruction and network analysis become crucial for
the understanding of complex systems such as biological, social, or economical networks.
In particular, the analysis of molecular networks has gained significant interest due to the
recent explosion of publicly available high-throughput biological data. In this context, the
question of identifying and analyzing the network structure at the origin of measured data
becomes a key issue.

In some occasions, measured data is given in the form of input-output time-series that
describes the effect of inputs on outputs (measured states) of a network. When data is
generated by a linear system, a matrix transfer function describing the dynamic input-
output behavior is generally obtained using system identification [33]. If the original state-
space model is available or deducible, then the associated network structure can be readily
obtained from it. However, a transfer function cannot, in general, recover, or realize, the
original state-space model since the realization problem does not typically have a unique
solution, i.e., different state-space realizations can generate the same input-output behavior.
Since each of these realizations may suggest entirely different network structures, it is in
general impossible to identify network structures from transfer functions alone. Therefore,
more information, beyond input-output data used to identify a transfer function, is needed
to prefer one state-space realization over another as a description of a particular system[45].

Another difficulty in the network reconstruction problem comes from the fact that the
realization problem becomes ill posed when some of the states are unobservable or “hidden”
(this even happens with just one hidden state [43, pp. 78]). As a result, failure to explicitly
acknowledge the presence of hidden states and the resulting ambiguity in network structures
can lead to a deceptive and erroneous process for network structure discovery. Consequently,
determining from measured data the presence or absence of a causal relationship between
two variables in a network is a challenging question.

Motivated by this, we are focusing on the effect of hidden states in the network that we
are aiming to reconstruct. A new representation for LTI systems, called dynamical structure
functions was introduced in [29]. Dynamical structure functions capture information at an
intermediate level between transfer function and state space representation (see Figure 18).
Specifically, dynamical structure functions not only encode structural information at the
measurement level, but also contain some information about hidden states. Based on the
theoretical results presented in [29], we proposed some guidelines for the design of an ex-
perimental data-acquisition protocol which allows the collection of data containing sufficient
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Figure 18: Mathematical structure of the network reconstruction problem using dynamical
structure functions. Red arrows mean “uniquely determine”, blue arrows indicate our work.

information for the network structure reconstruction problem to become solvable. In par-
ticular, we have shown that if nothing is known about the network, then the data-collection
experiments must be performed as follows:

(A.1) for a network composed of p measured species, the same number of experiments p must
be performed;

(A.2) each experiment must independently control a measured species, i.e., control input i
must first affect measured species i.

If the experiments are not performed in this way the network cannot be reconstructed, and
any network structure fits the data equally well (e.g. a fully decoupled network or a fully
connected network). If biologists have already some information about the network, as it is
usually the case, then these conditions can be relaxed as explained in [29].

Using dynamical structure functions as a mean to solve the network reconstruction prob-
lem, the following aspects need to be considered (see Figure 18):

First (see (A) in Figure 18), the properties of a dynamical structure function and its
relationship with the transfer function associated with the same system need to be precisely
established (this was done in [29]).

Second (see (B) in Figure 18), an efficient method is developed to reconstruct networks
in the presence of noise and nonlinearities (this was done in [46]). This method relies on
the assumption that the conditions for network reconstruction presented above in (A.1) and
(A.2) have been met. In our approach, we use the same information as traditional system
identification methods, i.e., input-output data. However, with our method, steady-state
(resp. time-series data) can be used to reconstruct the Boolean (resp. dynamical network)
structure of the system (see [46] for more details).

Third (see (C) in Figure 18), once the dynamical structure function is obtained, as
a main result of this section, an algorithm for constructing a minimal order state-space
representation consistent with such function is developed. In an application, this provides
a way to estimate the complexity of the system by determining the minimal number of
hidden states in the system. For example, in the context of biology it helps understand the
number of unmeasured molecules in a particular pathway: a low number means that most
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molecules in that pathway have been identified and measured, showing a good understanding
of the system; while a large number shows that there are still many unmeasured variables,
suggesting that new experiments should be carried out to better characterize that pathway.

The outline of the section is as follows. Section 7.4.1 reviews the definition of dynamical
structure functions and their properties. The main result can be found in Section 7.4.2
where we propose a minimal order realization algorithm based on state-space realizations
and pole-zero analysis. Simulation and discussion are addressed in Section 7.4.3. Finally
conclusions are presented in Section 7.4.4.

.4.1 System Model

Consider a linear system (it can also be a linearization of some original nonlinear system)
ẋ = Ax + Bu, y = Cx. The transfer function associated with this system is given by
G(s) = C(sI − A)−1B. Typically, we can use standard system identification tools [33] to
identify a transfer function G(s) from input-output data.

Like system realization, network reconstruction also begins with the identification of a
transfer function, but it additionally attempts to determine the network structure between
measured states without imposing any additional structure on the hidden states. As we
have shown in [29], this requires a new representation of linear time-invariant systems: the
dynamical structure function (defined later). An algorithm allowing the dynamical structure
function to be obtained from input-output data is proposed in [46]. This section assumes
that the dynamical structure function has already been obtained from data, and will focus
on finding one of its minimal state-space realizations.

The dynamical structure function is obtained as follows: First, we transform [A,B,C] to
[

Ao, Bo,
[

Ip 0
]]

without changing G(s), where p = rank(C). The linear system dynamics
then writes

[

ẏ
ż

]

=

[

Ao
11 Ao

12

Ao
21 Ao

22

] [

y
z

]

+

[

Bo
1

Bo
2

]

u

y =
[

Ip 0
]

[

y
z

] (32)

where x = (y, z) ∈ Rno
is the full state vector, y ∈ Rp is a partial measurement of the state, z

are the no− p “hidden” states, and u ∈ Rm is the control input. In this work we restrict our
attention to situations where output measurements constitute partial state information, i.e.,
p < no. We consider only systems with full rank transfer functions that do not have entire
rows or columns of zeros, since such “disconnected” systems are somewhat pathological and
only serve to complicate the exposition without fundamentally altering our conclusions.

Taking the Laplace transforms of the signals in (32) yields

[

sY
sZ

]

=

[

Ao
11 Ao

12

Ao
21 Ao

22

] [

Y
Z

]

+

[

Bo
1

Bo
2

]

U (33)

where Y , Z, and U are the Laplace transforms of y, z, and u, respectively. Solving for Z
gives

Z = (sI − Ao
22)

−1Ao
21Y + (sI −Ao

22)
−1Bo

2U
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Substituting this last expression of Z into (33) then yields

sY = W oY + V oU (34)

where W o = Ao
11 + Ao

12 (sI − Ao
22)

−1Ao
21 and V o = Bo

1 + Ao
12 (sI −Ao

22)
−1Bo

2.
Now, let Ro be a diagonal matrix formed of the diagonal terms of W o on its diagonal,

i.e., Ro = diag{W o} = diag(W o
11,W

o
22, ...,W

o
pp). Subtracting RoY from both sides of (34), we

obtain:
(sI − Ro) Y = (W o − Ro) Y + V oU

Note that W o − Ro is a matrix with zeros on its diagonal. We thus have:

Y = QY + PU (35)

where
Q = (sI − Ro)−1 (W o − Ro) (36)

and
P = (sI − Ro)−1 V o (37)

Note that Q is zero on the diagonal.

Definition 1. Given the system (32), we define the dynamical structure function of the
system to be [Q,P ].

Note that, in general, Q(s) and P (s) carry a lot more information than G(s). This can
be seen from the equality G(s) = (I −Q(s))−1P (s) (see [29] for details). However, Q(s) and
P (s) carry less information than the state-space model (32) (see [46]).

Definition 2. A dynamical structure function, [Q,P ], is said to be consistent with a par-
ticular transfer function, G, if there exists a realization of G, of some order, and of the
form (32), such that [Q,P ] are specified by (36) and (37). Likewise, a realization is consis-
tent with [Q,P ] if that realization gives [Q,P ] from (36) and (37).

Definition 3. We say that a realization is G minimal if this realization corresponds to a
minimal realization of G. We say that a realization is [Q,P ] minimal if this realization
is consistent with [Q,P ] and its order is smaller than or equal to that of all realizations
consistent with [Q,P ].

The underlying principle to find a [Q,P ] minimal realization is to search for a realization
with the minimal number of hidden states. Such a realization is characterized by the minimal
number of pole-zero cancellations in the transfer functions Q and P .

Proposition 2. Given a dynamical system (32) and the associated dynamical structure func-
tions [Q,P ] with Ro constructed as explained above (see (32)-(37)), the following conditions
must hold

diag{Ao
11} = lim

s→∞
Ro(s); (38)

Ao
11 − diag{Ao

11} = lim
s→∞

sQ(s); (39)

Bo
1 = lim

s→∞
sP (s). (40)
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Proof. Eq. (38) is directly obtained from the definition of Ro(s):

lim
s→∞

Ro(s) = lim
s→∞

diag{W o(s)}

= diag{ lim
s→∞

W o(s)} = diag{Ao
11}

Since the proofs for eq. (39) and (40) are very similar, we focus on eq. (39) only. Using the
fact that for any square matrix M , (I −M)−1 =

∑∞
i=0M

i, we obtain, from the definition of
Q given in (36), Q(s) =

∑∞
i=1 s

−iRo i−1(W o − Ro) and W o = Ao
11 +

∑∞
i=1 s

−iAo
12A

o i−1
22 Ao

21.
Hence, Q(s) = (Ao

11 −Ro(s))s−1 + r(s), in which r(s) is a matrix polynomial, whose largest
degree is −2. Finally, multiplying by s on both sides and taking the limit as s goes to ∞
results in eq. (39). A similar argument can be used to prove eq. (40).

We give an illustrative example here.

Example 1. Consider a system with the structure depicted in Fig. 19. A linear system’s
representation is

ẋ =













a11 0 a13 0 0
0 a22 0 a24 0
0 a32 a33 0 a35
a41 0 0 a44 0
0 a52 0 0 a55













x+













b11 0
0 b22
0 0
0 0
0 0













u

y =
[

I3 0
]

x

where I3 is the 3 × 3 identity matrix. Following the definitions in (36) and (37), we can
write down the corresponding dynamical structure function [Q,P ] with

Q =







0 0 a13
s−a11

a24a41
(s−a22)(s−a44)

0 0

0 a35a52+a32(s−a55)
(s−a33)(s−a55)

0






,

P =





b11
s−a11

0
0 b22

s−a22

0 0



 .

To illustrate Proposition 2, we have

lim
s→∞

sQ(s) =





0 0 a13
0 0 0
0 a32 0



 ;

lim
s→∞

sP (s) = s





b11
s−a11

0
0 b22

s−a22

0 0



 =





b11 0
0 b22
0 0



 .

Generally, there exist many realizations consistent with [Q,P ]. In the following section,
we focus on finding a [Q,P ] minimal realization (A,B,

[

I 0
]

), i.e., a realization which is
consistent with [Q,P ] and which has minimal order, i.e., with the dimension of A minimal
(and hence the lowest possible complexity).
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Figure 19: (a) An example system with two inputs, three measured states (states 1, 2, and 3)
and two hidden states (states 4 and 5). (b) The corresponding dynamical network structure.

.4.2 Algorithm to find a [Q,P ] minimal realization

From a dynamical structure function [Q,P ] we cannot reconstruct [W o, V o] since there is no
information regarding the diagonal transfer function matrix Ro. Given [Q,P ] and a diagonal
proper transfer function matrix R, a minimal realization of [W V ] = [(sI −R)Q+R (sI −
R)P ] can be obtained as follows:

[W V ] = [A11 B1] + A12(sI − A22)
−1[A21 B2] (41)

The idea is to start with an arbitrarily chosen R, and then use a state-space realization
approach to find a R∗ which minimizes the order of a minimal realization of [W V ].

Lemma 1. Suppose W , A22 and A are defined as in eq. (41), then V and G share the same
zeros.

Proof. Since sI −W is the Schur complement of sI −A22 in sI − A, then

det(sI −W ) =
det(sI −A)

det(sI − A22)
. (42)

Recall that V = B1 + A12(sI − A22)−1B2. Since (sI −W )G = V , we thus have that V and
G share the same zeros [49, page 153].

Given a dynamical structure function [Q,P ], a random choice of a proper diagonal trans-
fer function matrix R is likely to result in additional zeros in V = (sI−R)P . From Lemma 1,
this will lead to additional zeros in G which are associated to uncontrollable eigenvalues of
the considered realization [47, Section 4] and of course does not lead to a minimal realization
in eq. (41). At this stage the following question arises: how can we find a proper diagonal
transfer function matrix R∗ such that a minimal realization of [W V ] is a [Q,P ] minimal
realization, i.e.,

R∗ = argminR deg
{

(sI − R)s−1[sQ sP ] + [R 0]
}

, (43)

where deg is the McMillan degree [43]. Note that, since there are many choices for R∗ that
minimize the order of minimal realizations of [W V ], a chosen R∗ may be different from Ro.
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Assume that all elements in [Q P ] only have simple poles. This assumption can be
relaxed but we adopt it here for simplicity. Also assume that [Q P ] does not possess any
poles at 0 (otherwise we can change eq. (43) to (sI−R)(s−a)−1[(s−a)Q (s−a)P ]+ [R 0],
where a ∈ R is not a pole of [Q P ]).

Proposition 3. Assume [I −Q P ] only has simple poles and does not have any zeros. A
minimal order realization of [W V ] in (41) can be achieved using a constant diagonal matrix
R∗.

Proof. Assume R∗ has at least one term on the diagonal with the degree of numerator
greater or equal to 1, e.g., suppose the ith term in (sI − R∗)s−1 = (s+b)εi(s)

sφi(s)
with any b ∈ R

and deg(εi(s)) = deg(φi(s)) ≥ 1, where deg(·) returns the degree of a polynomial. Hence,
the multiplication (sI − R∗)s−1[sQ sP ] will introduce deg(φi(s)) new poles and, due the
assumption of simple poles, can at most eliminate deg(εi(s)) = deg(φi(s)) poles. As a
consequence, we can change the ith term to s+a

s
without increasing the order. Doing this

along all the elements of R∗ proves the result.

If R∗ is a constant matrix, the term [R∗ 0] in eq. (43) is also a constant matrix. Therefore,
the order of a minimal realization is only determined by (sI−R∗)s−1[sQ sP ] ! N [sQ sP ].
Thus, finding the “optimal” R∗ which leads to the minimal order in eq. (43) is equivalent
to finding a diagonal proper transfer matrix N (N with corresponding minimal realization
(A2, B2, C2, I) is restricted to the set of matrices of the form (sI − R∗)s−1 with a constant
R∗ from Proposition 3) such that N [sQ sP ] has as few poles as possible. Based on this
idea, the following algorithm is proposed:
Step 1: Find a Gilbert’s realization of the dynamical structure function.
First, using the results in [29, Lemma 1], we find a minimal realization (A1, B1, C1, D1) of
[sQ sP ]. When [sQ sP ] has l simple poles, using Gilbert’s realization [48] gives

[sQ sP ] =
l

∑

i=1

Ki

s− λi
+ lim

s→∞
[sQ sP ],

where Ki = lims→λi
(s− λi)[sQ sP ] and has rank 1 since we are assuming that [sQ sP ] has

simple poles.
Consider a matrix decomposition of Ki in the following form:

Ki = EiFi, ∀i,

where Ei ∈ Rp and Fi = (ET
i Ei)−1ET

i Ki. Then A1 = diag{λi} ∈ Rl×l,

B1 =
[

F T
1 F T

2 . . . F T
l

]T
, C1 =

[

E1 E2 . . . El

]

and D1 = lims→∞[sQ sP ].
Step 2: Find the maximal number of cancelled poles.
We define Φ as a largest subset of {E1, · · · , El} such that all the elements in Φ are mutually
orthogonal. We also define φ as the cardinality of Φ. Computationally, φ can be obtained
using the algorithm presented in the Appendix. We claim that φ is equal to the maximum
number of poles we can eliminate (the proof is in the Appendix). Therefore, the minimal
order of [W V ] is

l − φ.
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As a consequence, the order of the minimal reconstruction is the dimension of A11 (constant
p) plus the minimal dimension of A22 (obtained above): p+ l − φ.
Step 3: Construct R∗ to obtain the minimal reconstruction.
Once we have Φ, we know that N(λi)[j, j] = 0 implies R∗[j, j] = λi. Consequently, each
element in the set Φ will determine at least one element in R∗. This last fact can be used to
construct R∗ element by element. Once R∗ is found, we can obtain A, B using eq. (41).

.4.3 Illustrative example

Example 2. Consider a dynamical structure function [Q,P ]:

[Q | P ] =





0 1
s+2

1
s+3 | 1

s+4
1

s+1 0 1
s+3 | 1

s+4
1

s+1
1

s+2 0 | 1
s+4



 .

We first compute the McMillan degree of the corresponding transfer function: deg{G} =
deg{(I − Q)−1P )} = 4, meaning that a 4th order state-space model is enough to realize the
transfer function. It is interesting to see what is the minimal order realization consistent
with the dynamical structure function. The different steps of the algorithm proposed in the
previous section successively yield the following:

Step 1: A minimal Gilbert realization of s[Q,P ] is

A1 = diag{−1,−2,−3,−4}, B1 = diag{2, 2, 2, 4},

C1 =





0 −1 −1.5 −1
−0.5 0 −1.5 −1
−0.5 −1 0 −1



 , D1 =





0 1 1 1
1 0 1 1
1 1 0 1



 .

Step 2: By definition, Ei = C1vi where vi ∈ R4 has 1 in its ith position and zero otherwise.
Thus,

{E1, · · · , E4} =











0
−0.5
−0.5



 ,





−1
0
−1



 ,





−1.5
−1.5
0



 ,





−1
−1
−1











.

Furthermore, φ is 1 and the order of a minimal realization of the given dynamical structure
function is p+ l−φ = 3+4−1 = 6. Hence, the system must contain at least 3 hidden states.

Step 3: R∗ can be chosen as diag{a,−1,−1}, diag{−2, a,−2}, diag{−3,−3, a}, or
diag{−4,−4,−4} for any a ∈ R.

The reconstructed networks are represented in Fig. 20. There are three measured (red)
nodes, labeled 1, 2, 3 and by the analysis above, there are at least three hidden nodes such
that the corresponding realization is consistent with the dynamical structure function. The
red connections between measured nodes are the same for all candidate networks which is in
accordance with Proposition 2. Dashed lines correspond to the connections between hidden
and measured nodes.

From a biological perspective, this indicates that there are at least 3 unmeasured species
interacting with the measured species. Of course, the “true” biological system might be even
more complicated, i.e., it might have more than 6 species. Yet, when more states are mea-
sured, the dynamical structure functions can be easily updated and a new search for a minimal
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Figure 20: Topologies corresponding to the four [Q,P ] minimal realizations. The measured
nodes are colored red, while the hidden ones blue. Red connections between measured nodes
are the same for all the networks due to Proposition 2. Each node has a self-loop but we
omit it for simplicity.

realization of the updated system can be performed to reveal the corresponding minimal num-
ber of hidden states.

.4.4 Summary

In this section, we have presented a method for obtaining a minimal order realization consis-
tent with a given dynamical structure function. We show that the minimal order realization
of a given dynamical structure function can be achieved by choosing a constant diagonal ma-
trix R∗. This provides a way to estimate the complexity of the system by determining the
minimal number of hidden states that needs to be considered in the reconstructed network.
For example, in the context of reconstruction of biological networks from data, it helps to
understand the minimal number of unmeasured molecules in a particular pathway.

.5 The Meaning of Structure in Interconnected Dynamic Sys-
tems

Structure and dynamic behavior are two of the most fundamental concepts characterizing
a system. The interplay between these concepts has been a central theme in control as far
back as Black’s, Bode’s, or Nyquist’s work on feedback amplifiers [53, 54, 55], or even as
early as Maxwell’s analysis On Governors in 1868 [56].

The key property driving such analyses is the fact that an interconnection of systems
yields another system. This property suggests a natural notion of structure, as the intercon-
nection of systems, and focuses attention on understanding how interconnections of different
systems result in varieties of dynamic behaviors.

This idea of structure as interconnection is not only critical in the analysis of systems,
but it also plays a key role in system modeling. While black box approaches to modeling seek
to duplicate the input-output behavior of a system irrespective of structure, first principles
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approaches to modeling use the visible interconnection structure of a system to decompose
the system into smaller, fundamental components. Constitutive relations describing each
of these components are then applied, and interconnection principles linking these relations
then result in a model structurally and dynamically consistent with the original system.

While such approaches have demonstrated remarkable success in electrical and mechanical
domains where system components are readily visible and physically separated from each
other [57, 58, 59], application of such methods to biological, social, and other domains
has been more difficult. One reason may be that these systems do not exhibit a natural
structure in the same sense that previous applications have; while components of electrical
and mechanical systems are compartmentalized and solid-state, the physical relationship
among components of these other systems are often much more fluid [60, 61]. Perhaps for
these other domains different notions of structure play the role historically occupied by the
interconnection of components.

This section explores these ideas by characterizing the complete computational structure
of a system and then contrasting it with three distinct partial structure representations.
These different representations include the interconnection of subsystems and the standard
idea of a transfer function matrix, but it also includes a newer concept of system structure
called signal structure that appears to be especially useful for characterizing systems that
are difficult to compartmentalize. Precise relationships between these various perspectives
of system structure are then provided, along with a brief discussion on their implications for
various questions about realization and approximation.

.5.1 Complete Computational Structure

The complete computational structure of a system characterizes the actual processes it uses
to sense properties of its environment, represent and store variables internally, and affect
change externally. At the core of these processes are information retrieval issues such as the
encoding, storage, and decoding of quantities that drive the system’s dynamics. Different
mechanisms for handling these quantities result in different system structures.

Mathematically, state equations, or their generalization as descriptor systems [62, 63, 64]
are typically used to describe these mechanisms. Although there may be many realizations
that describe the same input-output properties of a particular system, its complete com-
putational structure is the architecture of the particular realization fundamentally used to
store state variables in memory and transform system inputs to the corresponding outputs.
In this work we will focus our attention on a class of differential algebraic systems that are
equivalent to a set of ordinary differential equations in state space form; we will refer to such
equations as generalized state equations.

Representing a system’s complete computational structure is thus a question of graphi-
cally representing the structure implied by the equations that govern its state evolution. In
this work, rather than focusing on the specific syntax of any one particular graphical mod-
eling language, we will draw from the standard system theoretic notions of a block diagram
and a signal flow graph to conduct a concrete analysis between graphical representations
of a system at various levels of abstraction. The complete computational structure of a
system, then, is the description of the system with the most refined resolution, which we
will characterize as a graph derived from a particular block diagram of the generalized state
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equations.
To make this concept of structure precise, we begin by considering a system G with

generalized state space realization

ẋ = f(x, w, u),
w = g(x, w, u),
y = h(x, w, u).

(44)

Note that this system is in the form of a differential algebraic equation, although we will
only consider systems with differentiation index zero, implying that (44) is always equivalent
to a standard ordinary differential or difference equation of the same order [65]. Typically
we may consider the system (44) to be defined over continuous time, with t ∈ R ≥ 0, and
with u ∈ Rm, x ∈ Rn, w ∈ Rl, y ∈ Rp, and ẋ taken to mean dx/dt. Moreover, we restrict
our attention to those functions f , g and h where solutions exist for t ≥ 0. Nevertheless, we
could also consider discrete time systems, with t = 0, 1, 2, 3, ... and ẋ in (44) taken to mean
x[t + 1], or systems with general input, state, auxiliary, and output spaces U , X , W, or Y ,
respectively. In some situations these “spaces” may merely be sets, e.g. X = {0, 1}. In any
case, however, we will take u ∈ Um, x ∈ X n, w ∈ W l, and y ∈ Yp so that m, n, l and p
characterize the dimensions of the input, state, auxiliary and output vectors, respectively.

Note that the auxiliary variables, w, are used to characterize intermediate computation
in the composition of functions. Thus, for example, we distinguish between f(x) = x and
f(x) = 2(.5x) by computing the latter as f(w) = 2w and w = g(x) = .5x. In this way,
the auxiliary variables serve to identify stages in the computation of the state space real-
ization (44). Frequently we may not require any auxiliary variables in our description of
the system; indeed it is the standard practice to eliminate auxiliary variables to simplify
the state descriptions of systems. Nevertheless, as we discuss structure, it will be critical
to use auxiliary variables to distinguish between systems with dynamically equivalent, yet
structurally distinct architectures, leading to the following definition.

Definition 4. Given a system (44), we call the number of auxiliary variables, l, the intricacy
of the realization.

To understand the structure of (44), we need a notion of dependence of a function on its
arguments. For example, the function f(x, y, z) = xy − x + z clearly depends on z, but it
only depends on x when y )= 1 (or on y when x )= 0). Since “structure” refers at some level
to the dependence of the system variables on each other, it is important that our notion of
dependence be made clear.

Definition 5. A function f(w), from l-dimensional domain W to s-dimensional co-domain
Z, is said to depend on the ith variable, wi, if there exist values of the other s− 1 variables
wj, j )= i, such that f(w) is not constant over all values of wi while holding the others
variables fixed. If s = 1, then f(w) depends on w if it is not constant over all values of w.

Note that when ∂f/∂wi is well defined, the above definition coincides with the partial
derivative being non-zero for some value of the variables wj . Nevertheless, here we allow
for non-differentiable functions as we explicitly characterize one notion of the structure of a
state space realization.
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Definition 6. Given a system G with realization (44), its complete or computational struc-
ture is a weighted directed graph C with vertex set V (C), and edge set E(C). The vertex set
contains m+n+ l+p elements, one associated with the mechanism that produces each input,
state, auxiliary, and output variable of the system, and we label the vertices accordingly. In
particular, the vertex associated with the ith input is labeled ui, 1 ≤ i ≤ m, the vertex asso-
ciated with the jth state is labeled fj, 0 ≤ j ≤ n, the vertex associated with the jth auxiliary
variable is labeled gj, 0 ≤ j ≤ l, and the vertex associated with the kth output is labeled hk,
1 ≤ k ≤ p. The edge set contains an edge from node i to node j if the function associated
with the label of node j depends on the variable produced by node i. Moreover, the edge (i, j)
is then labeled (weighted) with the variable produced by node i.

So, for example, consider the following continuous time system with real-valued variables:
[

ẋ1

ẋ2

]

=
f1(x1, w, u)
f2(x1)

,

w = g(x2)
y = h(x2) .

(45)

Its complete computational structure has node set V (C) = {u, f1, f2, g, h} and edge set
E(C) = {u(u, f1), x1(f1, f1), x1(f1, f2), x2(f2, g), x2(f2, h), w(g, f1)}; Figure 21 illustrates the
graph.

This notion of the complete computational structure of the system (44) corresponds with
the traditional idea of the structure of a dynamic system (see for example [66]), but with
some important differences. First, this description uses auxiliary variables to keep track of
the structural differences introduced by the composition of functions. This allows a degree
of flexibility in how refined a view of the computational structure one considers “complete.”
Also, this description may have some slight differences in the labeling of nodes and edges
compared with various descriptions in the literature. These differences will become important
as new notions of partial structure are introduced in later sections. Here, we use rectangular
nodes for graphs where the nodes represent systems, and the associated edges will represent
signals. This convention will bridge well between the graphical representation of system
structure and the typical engineering block diagram of a system, and it sometimes motivates
the simplification in drawing edges as shown in Figure 21b), since every edge that leaves a
node represents the same variable and carries the same label. Moreover, notice that nodes
associated with the mechanisms that produce output variables are terminal, in that no edge
ever leaves these nodes, while the nodes associated with input variables are sources, in that
no edge ever arrives at these nodes. Although it is common for engineering diagrams to
explicitly draw the edges associated with output variables and leave them “dangling,” with
no explicit terminal node, or to eliminate the input nodes and simply depict the input edges–
also “dangling,” our convention ensures that the diagram corresponds to a well defined graph,
with every edge characterized by an ordered pair of nodes. Note also that state nodes, such
as f1 in Figure 21, may have self loops, although auxiliary nodes will not, and at times it
will be convenient to partition the vertex set into groups corresponding to the input, state,
auxiliary, and output mechanisms as V (C) = {Vu(C), Vx(C), Vw(C), Vy(C)}. Likewise, we may
similarly partition the edge set as necessary.

We see, then, that knowing the complete structure C of a system is equivalent to knowing
its state space realization, along with the composition structure with which these functions
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are represented, given by (f, g, h). We refer to this structure as computational because it
reveals the dependencies among variables in the particular representation, or basis, that
they are stored in and retrieved from memory. These specific, physical mechanisms that
store and retrieve information, identified with Vx(C), are interconnected with devices that
transform variables, identified with Vw(C), and with devices that interface with the system’s
external environment. These devices include sensors, identified with Vu(C), and actuators,
identified with Vy(C), to implement the particular system behavior observed by the outside
world through the manifest variables, u and y. Although other technologies very well may
implement the same observed behavior via a different computational structure and a different
representation of the hidden variables, x and w, C describes the structure of the actual system
employing existing technologies as captured through a particular state description. In this
sense, C is the complete architecture of the system, and often may be interpreted as the
system’s “physical layer.” Importantly, it is often this notion of structure, or a very related
concept, that is meant when discussing the “structure” of a system, as the next example
illustrates.

Example: Graph Dynamical Systems As an example, we examine the computational
structure of a graph dynamical system (GDS). Graph dynamical systems are finite alphabet,
discrete time systems with dynamics defined in terms of the structure of an associated
undirected graph. They have been employed in the study of various complex systems [67, 68],
including

• Dynamical process on networks:

– disease propagation over a social contact graph,

– packet flow in cell phone communication,

– urban traffic and transportation;

• Computational algorithms:

– Gauss-Seidel,

– gene annotation based on functional linkage networks,

– transport computations on irregular grids;

• Computational paradigms related to distributed computing.

Here we observe that the computational structure of the graph dynamical system corresponds
naturally with the system’s underlying graph.

Given an undirected graph G with vertex set V (G) = {1, 2, ..., n}, a GDS associates with
each node i a state xi that takes its values from a specified finite set X . This state is then
assigned a particular update function that updates its value according to the values of states
associated with nodes adjacent to node i on G. Notice that this restriction on the update
function suggests that the update function for state i depends on states consistent with the
structure of G, indicating that the system’s computational structure C should correspond to
the adjacency structure of G.
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tory:
x[1] = [1 0 0 0]T

↓
x[2] = [1 0 0 0]T

↓
x[3] = [1 0 1 0]T

↓
x[4] = [1 0 1 0]T

↓
x[8] = [0 0 0 1]T

x[12] = [0 1 0 0]T

↓
x[16] = [0 0 1 0]T

↓
x[20] = [1 0 0 0]T

↓
x[24] = [0 1 0 1]T

↓
x[28] = [0 0 0 0]T

The computational structure of the system (46) follows immediately from the dependency
among variables characterized by equation (47); Figure 22 illustrates C for this system. No-
tice that the structure of G is reflected in C, where the undirected edges in G have been
replaced by directed edges in both directions, and self-loops have appeared where applica-
ble. Moreover, notice that C considers the explicit influence of the input sequence on the
update computation, and explicitly identifies the system output. In this way, we see that
the computational structure is a reflection of the natural structure of the sequential GDS.

Computational Structure of Linear Systems Linear systems represent an important
special case of those described by (44). They arise naturally as the linearization of sufficiently
smooth nonlinear dynamics near an equilibrium point or limit cycle, or as the fundamental
dynamics of systems engineered to behave linearly under nominal operating conditions. In
either case, knowing the structure of the relevant linear system is a critical first step to
understanding that of the underlying nonlinear phenomena.

The general state description of a linear system is given by

ẋ = Ax+ Âw + Bu,
w = Āx+ Ãw + B̄u,
y = Cx+ C̄w +Du,

(48)

where A ∈ Rn×n, Â ∈ Rn×l, Ā ∈ Rl×n, Ã ∈ Rl×l, B ∈ Rn×m, b̄ ∈ Rl×m, C ∈ Rp×n, C̄ ∈ Rp×l,
and D ∈ Rp×m. Note that I − Ã is necessarily invertible, ensuring that the differentiability
index of the system is zero. Nevertheless, the matrices are otherwise free.

As in the nonlinear case, it should be apparent that the auxiliary variables are superfluous
in terms of characterizing the dynamic behavior of the system; this idea is made precise in
the following lemma. Nevertheless, the auxiliary variables make a very important difference
in terms of characterizing the system’s complete computational structure, as illustrated by
the subsequent example.

Lemma 2. For any system (48) with intricacy l > 0, there exists a unique minimal intricacy
realization (Ao, Bo, Co, Do) with l = 0 such that for every solution (u(t), x(t), w(t), y(t)) of
(48), (u(t), x(t), y(t)) is a solution of (Ao, Bo, Co, Do).

Proof. The result follows from the invertibility of (I − Ã). Solving for w and substituting
into the equations of ẋ and y then yields (Ao, Bo, Co, Do).
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Consider, for example, the system (48) with state matrices given by D = 0 and the
following:

A =

[

0 0
0 0

]

Â =

[

0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1

]

Ā =

























c1 0
0 c2
0 0
0 0
0 0
0 0
a1 0
0 a2

























Ã =

























0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 e1 0 0 0 0 0 0
e2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























B =

[

0 0
0 0

]

B̄T =

[

0 0 0 0 b1 0 0 0
0 0 0 0 0 b2 0 0

]

C =

[

0 0
0 0

]

C̄ =

[

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

]

(49)

This system has the complete computational structure C shown in Figure 23a. Here, because
each auxiliary variable is defined as the simple product of a coefficient times another variable,
we label the node corresponding to wi in C with the appropriate coefficient rather than the
generic label, gi. Note that this realization has an intricacy of l = 8.

Suppose, however, that we eliminate the last six auxiliary variables, leading to an equiv-
alent realization with intricacy l = 2. The state matrices then become

A =

[

a1 0
0 a2

]

Â =

[

0 e1
e2 0

]

Ā =

[

c1 0
0 c2

]

Ã =

[

0 0
0 0

]

B =

[

b1 0
0 b2

]

B̄T =

[

0 0
0 0

]

C =

[

0 0
0 0

]

C̄ =

[

1 0
0 1

]

(50)

with computational structure C as shown in Figure 23b. Similarly, we can find an equivalent
realization with l = 0 given by

Ao =

[

a1 e1c2
e2c1 a2

]

Bo =

[

b1 0
0 b2

]

Co =

[

c1 0
0 c2

]

(51)
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and all other system matrices equal to zero. This realization, (51), is the minimal intricacy
realization of both systems (49) and (50), and its complete computational structure C is given
in Figure 23c. The equivalence between these realizations is easily verified by substitution.

Comparing the computational structures for different realizations of the same system,
(49), (50), and (51), we note that the intricacy of auxiliary variables plays a critical role in
suppressing or revealing system structure. Moreover, note that auxiliary variables can change
the nature of which variables are manifest or hidden. In Figure 23 shaded regions indicate
which variables, represented by edges, are hidden; manifest variables leave shaded regions
while hidden variables are contained within them. Note that the minimal intricacy realization
has no internal manifest variables, or, in other words, it has a single block of hidden variables
(Figure 23c). Meanwhile, both w1 and w2 are manifest in the other realizations (Figures 23a,
23b) since w1 = y1 and w2 = y2, indicated by the “1” at their respective terminal nodes.
This yields two distinct blocks of hidden variables, in either case, revealing the role intricacy
of a realization can play characterizing its structure.

The complete computational structure of a system is thus a graphical representation of
the dependency among input, state, auxiliary, and output variables that is in direct, one-to-
one correspondence with the system’s state realization, generalized to explicitly account for
composition intricacy. All structural and behavioral information is fully represented by this
description of a system. Nevertheless, this representation of the system can also be unwieldy
for large systems with intricate structure.

.5.2 Partial Structure Representations

Complex systems are often characterized by intricate computational structure and compli-
cated dynamic behavior. State descriptions and their corresponding complete computational
structures accurately capture both the system’s structural and dynamic complexity, never-
theless these descriptions themselves can be too complicated to convey an efficient under-
standing of the nature of the system. Simplified representations are then desirable.

One way to simplify the representation of a system is to restrict the structural information
of the representation while maintaining a complete description of the system’s dynamics. The
most extreme example of this type of simplified representation is the transfer function of a
single-input single-output linear time invariant (LTI) system. A transfer function completely
specifies the system’s input-output dynamics without retaining any information about the
computational structure of the system. For example, consider the nth order LTI single-input
single-output system given by (A, b, c, d). It is well known that although the state description
of the system completely specifies the transfer function, G(s) = c(sI − A)−1b + d, the
transfer function G(s) has an infinite variety of state realizations, and hence computational
structures, that all characterize the same input-output behavior. That is, the structural
information in any state realization of the system is completely removed in the transfer
function representation of the system, even though the dynamic (or behavioral) information
about the system is preserved.

We use this power of a transfer function to obfuscate structural information to develop
three distinct partial-structure representations of an LTI system: subsystem structure, signal
structure, and the zero pattern of a (multiple input, multiple output) system’s transfer
function matrix. Later we will show how each of these representations has more structural
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information than its successor, and we will precisely characterize the relationships among
them.

Subsystem Structure One of the most natural ways to reduce the structural information
in a system’s representation is to partition the nodes of its computational structure into sub-
systems, then replace these subsystems with their associated transfer function. Each transfer
function obfuscates the structure of its associated subsystem, and the remaining (partial)
structural information in the system is the interconnection between transfer functions.

Subsystem structure refers to the appropriate decomposition of a system into constituent
subsystems and the interconnection structure between these subsystems. Abstractly, it is the
condensation graph of the complete computational structure graph, C, taken with respect to
a particular partition of C that identifies subsystems in the system. Such abstractions have
been used in various ways to simplify the structural descriptions of complex systems [66, 69],
for example by “condensing” strongly connected components or other groups of vertices of
a graph into single nodes. Nevertheless, in this work we define a particular condensation
graph as the subsystem structure of the system. We begin by characterizing the partitions
of C that identify subsystems.

Definition 7. Given a system G with realization (48) and associated computational structure
C, we say a partition of V (C) is admissible if every edge in E(C) between components of the
partition represents a variable that is manifest, not hidden.

For example, considering the system (51) with V (C) = {u1, f1, c1, c2, f2, u2}. We see that
the partition {(u1), (f1, c1, c2, f2), (u2)} is admissible since the only edges between compo-
nents are u1(u1, f1) and u2(u2, f2), representing the manifest variables u1 and u2. Notice
that the shading in Figure 23c is consistent with this admissible partition. Alternatively,
the partition {(u1), (f1, c1), (c2, f2), (u2)} is not admissible for (51), since the edges x1(f1, f2)
and x2(f2, f1) extend between components of the partition but represent variables x1 and x2

that are hidden, not manifest.
Although sometimes any aggregation, or set of fundamental computational mechanisms

represented by vertices in C, may be considered a valid subsystem, in this work a subsystem
has a specific meaning. In particular, the variables that interconnect subsystems must be
manifest, and thus subsystems are identified by the components of admissible partitions
of V (C). We adopt this convention to 1) enable the distinction between real subsystems
vs. merely arbitrary aggregations of the components of a system, and 2) ensure that the
actual subsystem architecture of a particular system is adequately reflected in the system’s
computational structure and associated realization, thereby ensuring that such realization is
complete.

Definition 8. Given a system G with realization (48) and associated computational structure
C, the system’s subsystem structure is a condensation graph S of C with vertex set V (S) and
edge set E(S) given by:

• V (S) = {S1, ...Sq} are the elements of an admissible partition of V (C) of maximal
cardinality, and
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Proof. We prove by contradiction. Suppose the subsystem structure S of G is not unique.
Then there are at least two distinct subsystem structures of G, which we will label S1 and
S2. This implies there are two admissible partitions of V (C), given by V (S1) and V (S2),
such that V (S1) )= V (S2) and with equal cardinality, q. Note that by definition, q must be
the maximal cardinality of any admisible partition of V (C). To obtain a contradiction, we
will construct another admissible partition, V (S3), such that |V (S3)| > q.

Consider the following partition of V (C) that is a refinement of both V (S1) and V (S2):

V (S3) = {S3|S3 )= ∅;S3 = Si ∩ Sj , Si ∈ V (S1), Sj ∈ V (S2)}.

Since V (S1) )= V (S2), then |V (S3)| > q, since the cardinality of the refinement must then be
greater than that of V (S1) or V (S2). Moreover, note that the partition V (S3) is admissible,
since every edge of C between vertices associated with distinct components of V (S3) corre-
sponds with an edge of either S1 or S2, which are admissible. Thus, V (S3) is an admissible
partition of V (C) with cardinality greater than q, which contradicts the assumption that S1

and S2 are both subsystem structures of G.

The subsystem structure of a system reveals the way natural subsystems are intercon-
nected, and it can be represented in other ways besides (but equivalent to) specifying S.
For example, one common way to identify this kind of subsystem architecture is to write
the system as the linear fractional transformation (LFT) with a block diagonal “subsystem”
component and a static “interconnection” component (see [70] for background on the LFT).
For example, the system in Figure 24a can be equivalently represented by the feedback in-
terconnection of a static system N : U×W→ Y× (U×W) and a block-diagonal dynamic
system S : U×W→W given by

N =

















0 0 1 0
0 0 0 1
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

















, S =

[

S1 0
0 S2

]

, (52)

where

S1 :

[

u1

w2

]

→ w1 S2 :

[

w1

u2

]

→ w2 (53)

In general, the LFT associated with S will have the form

N =

[

0 I
L K

]

S =







S1 0 ...

0
. . .

... 0 Sq






(54)

where q is the number of distinct subsystems, and L and K are each binary matrices of the
appropriate dimension (see Figure 25). Note that if additional output variables are present,
besides the manifest variables used to interconnect subsystems, then the structure of N
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Figure 25: The subsystem structure of a system can always be represented by the lower
linear fractional transformation of the static interconnection matrix N with a block diagonal
transfer function matrix S. Note that π(u, w) represents a permutation of a subset of the
variables in the vector inputs, u, and manifest auxiliary variables, w, possibly with repetition
of some variables if necessary.

and S above extend naturally. In any event, however, N is static and L and K are binary
matrices.

The subsystem structure of any system is well defined although it may be trivial (a
single internal block) if the system does not decompose naturally into an interconnection
of subsystems, such as (51) in Figure 23c and Figure 24b. Note that S always identifies
the most refined subsystem structure possible, and for systems with many interconnected
subsystems, coarser representations may be obtained by aggregating various subsystems to-
gether and constructing the resulting condensation graph. These coarser representations
effectively absorb some interconnection variables and their associated edges into the aggre-
gated components, suggesting that such representations are the subsystem structure for less
intricate realizations of the system, where some of the manifest auxiliary variables are re-
moved, or at least left hidden. The subsystem structure is thus a natural partial description
of system structure when the system can be decomposed into the interconnection of specific
subsystems.

Signal Structure Another very natural way to partially describe the structure of a system
is to characterize the direct causal dependence among each of its manifest variables; we will
refer to this notion as the signal structure. This description of the structure of a system
makes no attempt to cluster, or partition, the actual internal system states. As a result, it
offers no information about the internal interconnection of subsystems, and signal structure
can therefore be a very different description of system structure than subsystem structure.

Given a generalized linear system (48) with complete computational structure C, we char-
acterize its signal structure by considering its minimal intricacy realization (Ao, Bo, Co, Do).
We assume without loss of generality that the outputs y are ordered in such a way that C0
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can be partitioned

Co =

[

C11 C12

C21 C22

]

where C11 ∈ Rp1×p1 is invertible, with p1 equal to the rank of Co; C12 ∈ Rp1×(n−p1); C21 ∈
R(p−p1)×p1 ; and C22 ∈ R(p−p1)×(n−p1). Note that if the outputs of the minimal intricacy
realization do not result in C11 being invertible, then it is possible to reorder them so the
first p1 outputs correspond to independent rows of Co; the states can then be renumbered
so that C11 is invertible. One can show that such reordering of the outputs and states of
the minimal intricacy realization only affects the ordering of the states and outputs of the
original system; the graphical relationship of the computational structure is preserved.

The direct causal dependence among manifest variables is then revealed as follows. First,
consider the state transformation z = Tx given by

T =

[

C11 C12

0 I

]

. (55)

This transformation yields a system of the form
[

ż1
ż2

]

=

[

A11 A12

A21 A22

] [

z1
z2

]

+

[

B1

B2

]

u

[

y1
y2

]

=

[

I 0
C2 0

] [

z1
z2

]

+

[

D1

D2

]

u

(56)

where z ∈ Rn, u ∈ Rm, y1 ∈ Rp1 , and y2 ∈ Rp−p1. To simplify the exposition we will abuse
notation and refer to the above system as (A,B,C,D), since there is little opportunity to
confuse these matrices with those of the original system given in (48). In fact, the system
(56) is simply a change of coordinates of the minimal intricacy realization (Ao, Bo, Co, Do),
possibly with a reordering of the output and state variables. The direct causal depen-
dence among manifest variables is then revealed by the dynamical structure function of
(A,B,

[

I 0
]

, D1).
The dynamical structure function of a class of linear systems was defined in [71] and

discussed in [72, 73, 74, 75, 76, 77]. This representation of a linear system describes the direct
causal dependence among a subset of state variables, and it will extend to characterize signal
structure for the system in (56). We repeat and extend the derivation here to demonstrate
its applicability to the system (56). Taking Laplace transforms and assuming zero initial
conditions yields the following relationships

[

sZ1

sZ2

]

=

[

A11 A12

A21 A22

] [

Z1

Z2

]

+

[

B1

B2

]

U (57)

where Z(s) denotes the Laplace transform of z(t), etc. Solving for Z2 in the second equation
and substituting into the first then yields

sZ1 = W (s)Z1 + V (s)U (58)
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where W (s) = [A11 + A12(sI − A22)−1A21] and V (s) = [B1 + A12(sI −A22)−1B2]. Let D̂(s)
be the matrix of the diagonal entries of W (s), yielding

Z1 = Q(s)Z1 + P (s)U (59)

where Q(s) = (sI − D̂(s))−1(W (s) − D̂(s)) and P (s) = (sI − D̂(s))−1V (s). From (56) we
note that Z1 = Y1 −D1U , which, substituting into (59), then yields:

[

Y1

Y2

]

=

[

Q(s)
C2

]

Y1 +

[

P (s) + (I −Q(s))D1

D2

]

U (60)

The matrices
[

Q(s)T CT
2

]T
and

[

(P (s) + (I −Q(s))D1)T DT
2

]T
we refer to as Q̄

and P̄ , respectively. The matrices (Q(s), P (s)) are called the dynamical structure function
of the system (56), and they characterize the dependency graph among manifest variables
as indicated in Equation (60). We note a few characteristics of (Q(s), P (s)) that give them
the interpretation of system structure, namely:

• Q(s) is a square matrix of strictly proper real rational functions of the Laplace variable,
s, with zeros on the diagonal. Thus, if each entry of y1 were the node of a graph, Qij(s)
would represent the weight of a directed edge from node j to node i; the fact Qij(s) is
proper preserves the meaning of the directed edge as a causal dependency of yi on yj.

• Similarly, the entries of the matrix [P (s) + (I −Q(s))D1] carry the interpretation of
causal weights characterizing the dependency of entires of y1 on the m inputs, u. Note
that when D1 = 0, this matrix reduces to P (s), which has strictly proper entries.

This leads naturally to the definition of signal structure.

Definition 9. The signal structure of a system G, with realization (48) and equivalent
realization (56), and with dynamical structure function (Q(s), P (s)) characterized by (59),
is a graph W, with a vertex set V (W) and edge set E(W) given by:

• V (W) = {u1, ..., um, y11, ..., y1p1, y21, ..., y2p2}, each representing a manifest signal of the
system, and

• E(W) has an edge from ui to y1j, ui to y2j, y1i to y1j or y1i to y2j if the associated entry
in [P (s) + (I −Q(s))D1], D2, Q(s), or C21 (as given in Equations (59) and (60)) is
nonzero, respectively.

We label the nodes of V (W) with the name of the associated variable, and the edges of E(W)
with the associated transfer function entry from Equation (60).

Signal structure is fundamentally a different type of graph than either the computational
or subsystem structure of a system because, unlike these other graphs, vertices of a system’s
signal structure represent signals rather than systems. Likewise, the edges of W represent
systems instead of signals, as opposed to C or S. We highlight these differences by using
circular nodes in W, in contrast to the square nodes in C or S. The next example illustrates a
system without notable subsystem structure and no apparent structural motif in its complete
computational structure; nevertheless, it reveals a simple and elegant ring structure in the
weak sense.
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Figure 26: The complete computational structure C, of the system (Ao, Bo, Co, Do) given by
(61). Here, edge labels, u and x, and self loops on each node fi have been omitted to avoid
the resulting visual complexity. Edges associated with variables x, which are not manifest,
are entirely contained within the shaded region (which also corresponds to the strong partial
condensation shown in Figure 27a).

Example 3. Ring Signal Structure. Systems with no apparent structure in any other sense
can nevertheless be very structured in the weak sense. Consider the minimally intricate linear
system, specified by the state-space realization (Ao, Bo, Co, Do), where

Ao =
1

12





















−178 262 −10 −141 −19 88

−156 252 −12 −156 −48 84

−158 166 −38 −147 −5 128

−12 48 −12 −72 −12 12

−288 504 0 −264 −180 144

0 24 0 −24 −12 −12





















,

Bo =
1

4

















0 −1 21
0 0 12
−8 1 27
0 0 0
0 0 0
0 0 0

















,

Co =







−1 4 −1 −2 −1 1

−12 21 0 −11 −5 6

0 2 0 −2 −1 0






, Do =





0 0 0
0 0 0
0 0 0



. (61)

We compute the signal structure by employing a change of coordinates on the state variables
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to find an equivalent realization of the form (56). The transformation

T =





















−1 4 −1 −2 −1 1

−12 21 0 −11 −5 6

0 2 0 −2 −1 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





















(62)

results in the following realization

A = TA0T
−1 =





















−2 0 0 0 0 −3

0 −3 0 −1 0 0

0 0 −4 0 5 0

1 0 0 −4 0 0

0 2 0 0 −5 0

0 0 1 0 0 −1





















B = TB0 =





















2 0 0

0 3 0

0 0 6

0 0 0

0 0 0

0 0 0





















,

C = C0T−1 =
[

I3 0
]

,

D = D0 = [0].

(63)

The dynamical structure function of the system, (Q,P ), then becomes

Q =







0 0 −3
s2+3s+2

−1
s2+7s+12 0 0

0 10
s2+9s+20 0






,

P =







2
s+2 0 0

0 3
s+3 0

0 0 6
s+4






(64)

which yields the signal structure, W, as shown in Figure 27b. Notice that although the com-
plete computational structure and subsystem structure do not characterize any meaningful
interconnection patterns, the system is nevertheless structured and organized in a very con-
crete sense. In particular, the outputs y1, y2, and y3 form a cyclic dependency, and each
causally depends on a single input ui, i = 1, 2, 3,, respectively.
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Zero Pattern of the Transfer Function Matrix The weakest notion of structure ex-
hibited by a system is the pattern of zeros portrayed in its transfer function matrix, where
“zero” refers to the value of the particular transfer function element, not a transmission
zero of the system. Like signal structure, this type of structure is particularly meaning-
ful for multiple-input multiple-output systems, and, like signal structure, the corresponding
graphical representation reflects the dependance of system output variables on system input
variables. Thus, nodes of the graph will be signals, represented by circular nodes, and the
edges of the graph will represent systems, labeled with the corresponding transfer function
element; a zero element thus corresponds to the absence of an edge between the associated
system input and output. Formally, we have the following definition.

Definition 10. The zero pattern of the transfer function of a system G is a graph Z, with
a vertex set V (Z) and edge set E(Z) given by:

• V (Z) = {u1, ..., um, y1, ..., yp}, each representing a manifest signal of the system, and

• E(Z) has an edge from ui to yj if Gji is nonzero.

We label the nodes of V (Z) with the name of the associated variable, and the edges of E(Z)
with the associated element from the transfer function G(s).

Unlike signal structure, note that the zero pattern of the transfer function matrix de-
scribes the closed-loop dependency of an output variable on a particular input variable, not
its direct dependence. As a result, the graph is necessarily bipartite, and all edges will begin
at an input node and terminate at an output node; no edges will illustrate dependencies
between output variables. For example, the zero pattern of the transfer function for the
system in Example 3, is shown in Figure 28, with transfer function G(s) =



















n1(s)
d(s)

−90(s+4)
d(s)

−18(s3+12s2+47s+60)
d(s)

−2(s3+10s2+29s+20)
d(s)

3(s5+16s4+97s3+274s2+352s+160)
d(s)

18(s+5)
d(s)

−20(s+1)
d(s)

30(s3+7s2+14s+8)
d(s)

n2(s)
d(s)



















, (65)

where d(s) = s6+19s5+145s4+565s3+1170s2+1220s+450, n1(s) = 2(s5+17s4+111s3+
343s2+488s+240), and n2(s) = 6(s5+15s4+85s3+225s2+274s+120). Although the direct
dependence, given by the signal structure, is cyclic (Figure 27b), there is a path from every
input to every output that does not cancel. Thus, the zero pattern of the transfer function
is fully connected, corresponding to the full transfer function matrix in Equation (65).

It is important to understand that the zero pattern of a transfer function does not neces-
sarily describe the flow of information between inputs and outputs. The presence of a zero
in the (i, j)th location simply indicates that the input-output response of the system results
in the ith output having no dependence on the jth input. Such an effect, however, could be
the result of certain internal cancellations and does not suggest, for example, that there is
no path in the complete computational structure from the jth input to the ith output. Thus,
for example, a diagonal transfer function matrix does not imply the system is decoupled.

The next example demonstrates that a fully coupled system may, nevertheless, have a di-
agonal transfer function, even when the system is minimal in both intricacy and order. That
is, the internal cancellations necessary to generate the diagonal zero pattern in the transfer
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Figure 28: The zero pattern of the transfer function for the system in Example 3. Note that
vertices of the zero pattern are manifest signals, distinguished in this work by circular nodes
similar to those of signal structure. Nevertheless, this system has a fully connected (and
thus unstructured) zero pattern, while its signal structure (shown in Figure 27b) exhibits a
definite ring structure.

function while being fully coupled do not result in a loss of controllability or observability.
Thus, the zero pattern of a transfer function only describes the input-output dependencies
of the system and does not imply anything about the internal information flow or commu-
nication structure. This fact is especially important in the context of decentralized control,
where the focus is often on shaping the zero pattern of a controller’s transfer function given
a particular zero pattern in the transfer function of the system to be controlled.

Example 4. Diagonal Transfer Function )= Decoupled. Consider a system, G, with the
following minimal intricacy realization, (Ao, Bo, Co, Do):

[

ẋ1

ẋ2

]

=

[

−5 1
2 −4

] [

x1

x2

]

+

[

2 1
4 −1

] [

u1

u2

]

[

y1
y2

]

=

[

1 1
−4 2

] [

x1

x2

]

(66)

It is easy to see from (Ao, Bo, Co, Do) that this system has a fully connected complete com-
putational structure. Moreover, one can easily check that the realization is controllable and
observable, and thus of minimal order. Nevertheless, its transfer function is diagonal, given
by

G(s) =

[

6
s+3 0
0 −6

s+6

]

. (67)

.5.3 Relationships Among Representations of Structure

In this section, we explore the relationships between the four representations of structure de-
fined above. What we will find is that some representations of structure are more informative
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than others. Next, we will discus a specific class of systems in which the four representations
of structure can be ranked by information content (with one representation encapsulating
all the information contained in another representation of structure). Outside this class of
systems, however, we will demonstrate that signal structure and subsystem structure have
fundamental differences in addition to those arising from the graphical conventions of cir-
cular versus square nodes, etc. Signal and subsystem structure provide alternative ways of
discussing a system’s structure without requiring the full detail of a state-space realization
or the abstraction imposed by a transfer function. Understanding the relationships between
these representations then enables the study of new kinds of research problems that deal
with the realization, reconstruction, and approximation of system structure (where struc-
ture can refer to the four representations defined so far or other representations of structure
not mentioned in this work). The final section gives a discussion of such future research.

Different representations of structure contain different kinds of structural information
about the system. For example, the complete computational structure details the struc-
tural dependencies among fundamental units of computation. Using complete computational
structure to model system structure requires knowledge of the parameters associated with
each fundamental unit of computation. Partial representations of structure such as signal
and subsystem structure do not require knowledge of such details in their description. Specif-
ically, subsystem structure essentially aggregates units of computation to form subsystems
and models the closed-loop transfer function of each subsystem. Signal structure models the
SISO transfer functions describing direct causal dependencies between outputs and inputs
of some of the fundamental units of computation that happen to be manifest. Zero pattern
structure models the closed-loop dependencies of system outputs on inputs. Thus, complete
computational structure appears to be the most demanding or information-rich description
of system structure. Indeed, this intuition is made precise with the following result:

Theorem 1. Suppose a complete computational structure has minimal intricacy realization
(Ao, Bo, Co, Do) with

C0 =

[

C11 C12

C21 C22

]

and C11 invertible. Then the complete computational structure specifies a unique subsystem,
signal, and zero pattern structure.

Proof. Let C be a computational structure with minimal intricacy realization (Ao, Bo, Co, Do)
with

C0 =

[

C11 C12

C21 C22

]

,

C11 invertible. By Lemma 3, the subsystem structure S is unique. Since C11 is invertible,
we see that equations (58) and (60) imply that the minimal intricacy realization uniquely
specifies the dynamical structure function of the system. By definition, the signal structure
is unique. Finally, write the generalized state-space realization of C as

(A,B,C,D) =

([

A Â
Ā Ã

]

,

[

B
B̄

]

,
[

C C̄
]

,D

)

.
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The uniqueness of the zero pattern structure follows from its one-to-one correspondence with
the transfer function G(s) = Co(sI − Ao)−1Bo +Do which can also be expressed as

(C + C̄(I − Ã)−1Ā)(sI − A− Â(I − Ã)−1Ā)−1(B + B̄(I − Ã)−1Ā).

It is well known that a transfer function G(s) can be realized using an infinite number
of state-space realizations. Without additional assumptions, e.g. full state feedback, it is
impossible to uniquely associate a single state-space realization with a given transfer function.
On the other hand, a state space realization specifies a unique transfer function. In this sense,
a transfer function contains less information than the state space realization.

Similarly, subsystem, signal, and zero pattern structure can be realized using multiple
complete computational structures. Without additional assumptions, it is impossible to
associate a unique complete computational structure with a given subsystem, signal, or zero
pattern structure. Theorem 1 shows that a complete computational structure specifies a
unique subsystem, signal, and zero pattern structure. In this sense, a complete computational
structure is a more informative description of system structure than subsystem, signal and
zero pattern structure. The next result has a similar flavor and follows directly from the
one-to-one correspondence of a system’s transfer function with its zero pattern structure.

Theorem 2. Every subsystem structure or signal structure specifies a unique zero pattern
structure.

Proof. Consider the LFT representation F(N, S) of a subsystem structure S; write

N =

[

0 I
L K

]

as in equation (54). The linear fractional transform gives the input-output map, i.e. the
transfer function. Thus, G(s) = (I − SK)−1SL.

Similarly, using the dynamical structure representation of the signal structure W given
in equation (60), we can solve for the transfer function

G(s) =

(

I −

[

Q(s) 0
C2 0

])−1 [
P (s) + (I −Q(s))D1

D2

]

The result follows from the definition of zero pattern structure.

The relationship between subsystem structure and signal structure is not so straightfor-
ward. Nevertheless, subsystem structure does specify a unique signal structure for a class of
systems, namely systems with subsystem structure composed of single output (SO) subsys-
tems and where every manifest variable is involved in subsystem interconnection. For this
class of systems, subsystem structure is a richer description of system structure than signal
structure.
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Single Output Subsystem Structure and Signal Structure

Theorem 3. Let S be a SO subsystem structure with LFT representation F(N, S). Suppose

N =

[

0 I
L K

]

,

where
[

L K
]

has full column rank. Then S uniquely specifies the signal structure of the
system.

Proof. The dynamics of N and S satisfy

Y = [0]U + [I] Y (68)

π = LU +KY (69)

Y = Sπ (70)

Combining the second and third equation, we get

Y = Sπ = S
[

K L
]

[

Y
U

]

.

Since S is a SO subsystem structure, the entries of S describe direct causal dependencies
among manifest variables involved in interconnection. Since

[

L K
]

has full column rank
and is a binary matrix, this means that each manifest variable is used at least once in
interconnection. Thus, S describes the direct causal dependencies between all manifest
variables of the system and specifies the signal structure of the system.

Notice that for the class of systems described above, the four representations of structure
can be ordered in terms of information content. Theorem 1 shows that the complete com-
putational structure uniquely specifies all the other representations of structure and thus
is the most informative of the four. By Theorem 3 and Theorem 2 respectively, subsystem
structure uniquely specifies the signal structure and zero pattern structure of the system and
thus is the second most informative. Similarly, signal structure is the third most informative
and zero pattern structure is the least informative of the four representations of structure.

We note that the converse of Theorem is also true, namely if the subsystem structure of
a system specifies a unique signal structure then the subsystem structure is a SO subsystem
structure where every manifest variable is an interconnection variable. The proof is simple
and follows from the result of the next subsection. We also provide several examples that
show how a multiple output subsystem structure can be consistent with multiple signal
structures - these all will serve to illustrate the general relationship between subsystem and
signal structure outside of the class of systems mentioned above.

The Relationship Between Subsystem and Signal Structure Subsystem structure
and signal structure are fundamentally different descriptions of system structure. In general,
subsystem structure does not encapsulate the information contained in signal structure. Sig-
nal structure describes direct causal dependencies between manifest variables of the system.
Subsystem structure describes closed loop dependencies between manifest variables involved
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in the interconnection of subsystems. Both representations reveal different perspectives of a
system’s structure. The next result makes this relationship between subsystem and signal
structure precise.

Theorem 4. Given a system G, let F(N, S) be the LFT representation of a subsystem
structure S. In addition, let the signal structure of the system G be denoted as in equation
(60). Let Y (Si) denote the outputs associated with subsystem Si. Define

[Qint(s)]ij ≡

{

Q̄ij(s) yi, yj ∈ Y (Sk), Sk a subsystem in S

0 otherwise,

and Qext ≡ Q̄(s)−Qint(s). Then the signal structure and subsystem structure are related in
the following way:

S
[

L K
]

= (I −Qint)
−1

[

P̄ Qext

]

(71)

Proof. Examining relation (71), observe that the ijth entry of the left hand side describes

the closed loop causal dependency from the jth entry of
[

UT Y T
]T

to Yi. By closed loop,
we mean that they do not describe the internal dynamics of each subsystem, e.g. the direct
causal dependencies among outputs of a single subsystem. Thus, these closed loop causal
dependencies are obtained by solving out the intermediate direct causal relationships, i.e.
the entries in Qint. Notice that the right hand side of (71) also describes the closed loop map

from
[

UT Y T
]T

to Y, and in particular the ijth entry of

(I −Qint)
−1

[

P̄ Qext

]

describes the closed loop causal dependency from the jth entry of
[

U Y
]T

to Yi.

As a special case, notice that for SO subsystem structures, Qint becomes the zero matrix
and that for subsystem structures with a single subsystem, S becomes the system transfer
function, L becomes the identity matrix, Qint = Q̄, and Qext and K are both zero matrices.
The primary import of this result is that a single subsystem structure can be consistent with
two or more signal structures and that a single signal structure can be consistent with two
or more subsystem structures. Consider the following examples:

Example 5. A Signal Structure consistent with two Subsystem Structures
In this example, we will show how a signal structure can be consistent with two subsystem
structures. To do this we construct two different generalized state-space realizations that yield
the same minimal intricacy realization but different admissible partitions (see Definition 7).
The result is two different subsystem structures that are associated with the same signal
structure. First, we consider the complete computational structure C1 with generalized state-
space realization

(A1,B1,C1,D1) =

([

A1 Â1

Ā1 Ã1

]

,

[

B1

B̄1

]

,
[

C1 C̄1

]

, D1

)
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where

A2 =













−4 1 0 0 1
1 −7 0 0 3
0 0 −6 1 0
0 0 2 −6 0
1 2 0 0 −10













, Â2 =













0 0 2 1
0 0 2 1
2 1 0 0
1 2 0 0
0 0 0 0













Ā2 = Ā1, Ã2 = [0]4 ,

B2 = B1 = 15×1, B̄2 = B̄1 = 04×1,

C2 = C1, C̄2 = C̄1,

and D2 = D1. Figure 29b shows the computational structure C2. The difference between these
two computational structures is evident more in the subsystem structure representation of
the system - note how replacing A1 with A2, essentially externalizes internal dynamics. The
result is that C2 admits a subsystem structure S2 which divides one of the subsystems of S1

into two subsystems. This is more apparent in the LFT representations of S1 and S2; the
LFT representation of S1 is given by F(N1, S1) =

N1 =









































04×1 I4
0
0
1
0
0
0
1
0
0
0
1

0 0 1 0
0 0 0 1
0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0









































and

S1 =





S11 0 0
0 S12 0
0 0 S13



 ,

with S11, S12, S13 given by

[

2(s2+18s+76)
s3+21s+130s+234

s2+18s+76
s3+21s+130s+234

s2+19s+86
s3+21s2+130s+234

2(s2+15s+52)
s3+21s2+130s+234

s2+15s+52
s3+21s2+130s+234

(13+s)(s+5)
s3+21s2+130s+234

]

,

[

2
s+6

1
s+6

1
s+6

1
s+6

]

,
[

1
s+6

2
s+6

2
s+6

1
s+6

]

respectively.
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The LFT representation of S2 is represented as the LFT F(N2, S2) = where

N2 =





















04×1 I4
0
0
1
0
0
1

0 0 1 0
0 0 0 1
0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0





















and

S2 =

[

S21 0
0 S22

]

,

S21 =

[

2(s2+18s+76)
s3+21s2+130s+234

s2+18s+76
s3+21s2+130s+234

s2+19s+86
s3+21s2+130s+234

2(s2+15s+52)
s3+21s2+130s+234

s2+15s+52
s3+21s2+130s+234

(13+s)(s+5)
s3+21s2+130s+234

]

,

S22 =

[ 2s+13
s2+12s+34

s+8
s2+12s+34

7+s
s2+12s+34

s+10
s2+12s+34

2(7+s)
s2+12s+34

s+8
s2+12s+34

]

.

However, if we consider the minimal intricacy realizations of C1, C2 we get the same
state-space realization (Ao, Bo, Co, Do) with

Ao =













−4 1 2 1 1
1 −7 2 1 3
2 1 −6 1 0
1 2 2 −6 0
1 2 0 0 −10













, Bo =













1
1
1
1
1













C =
[

I4 04×1

]

The signal structure of the system is thus specified by the dynamical structure function
(Q,P )(s), with

Q(s) =











0 12+s
s2+14s+39

2(s+10)
s2+14s+39

s+10
s2+14s+39

13+s
s2+17s+64 0 2(s+10)

s2+17s+64
s+10

s2+17s+64
2

s+6
1

s+6 0 1
s+6

1
s+6

2
s+6

2
s+6 0











P (s) =









11+s
s2+14s+39

13+s
s2+17s+64

1
s+6
1

s+6









Example 6. A Subsystem Structure consistent with two Signal Structures
Now we consider a subsystem structure with multiple signal structures. Recalling the discus-
sion above, subsystem structure describes the closed loop causal dependencies between mani-
fest interconnection variables and signal structure specifies direct causal dependencies between
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manifest variables. When it is impossible to determine these direct causal dependencies by
inspection from the closed loop causal dependencies in a subsystem structure representation,
then there can be multiple signal structures that are consistent with the subsystem structure.

Reconsider S2. The LFT is given by F(N2, S2) where

N2 =





















04×1 I4
0
0
1
0
0
1

0 0 1 0
0 0 0 1
0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0





















and

S2 =

[

S21 0
0 S22

]

,

with S21 and S22 given by
[

2(s2+18s+76)
s3+21s2+130s+234

s2+18s+76
s3+21s2+130s+234

s2+19s+86
s3+21s2+130s+234

2(s2+15s+52)
s3+21s2+130s+234

s2+15s+52
s3+21s2+130s+234

(13+s)(s+5)
s3+21s2+130s+234

]

,

[ 2s+13
s2+12s+34

s+8
s2+12s+34

7+s
s2+12s+34

s+10
s2+12s+34

2(7+s)
s2+12s+34

s+8
s2+12s+34

]

respectively.
If we consider the relation

S2

[

K L
]

= (I −Qint)
−1

[

Qext P
]

,

we can take (Q,P )(s) to equal
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and Qext ≡ Q1 −Qint, or Q2(s) =
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and taking Qint ≡ [0] and Qext ≡ Q2. It is routine to show that with these definitions, both
(Q1, P1)(s) and (Q2, P2)(s) are consistent with S2. Thus a single subsystem structure can be
consistent with two signal structures. It is important to note that one of our signal structures
exhibited direct causal dependencies corresponding exactly with the closed loop dependencies
described by subsystem structure. We note that this correspondence sometimes occurs (as in
the case of Theorem 3) but generally does not hold.

7.5.4 Impact on Systems Theory

The introduction of partial structure representations suggests new problems in systems the-
ory. These problems explore the relationships between different representations of the same
system, thereby characterizing properties of the different representations. For example, clas-
sical realization theory considers the situation where a system is specified by a given transfer
function, and it explores how to construct a consistent state space description. Many im-
portant ideas emerge from the analysis:

1. State realizations are generally more informative than a transfer function representa-
tion of a system, as there are typically many state realizations consistent with the same
transfer function,

2. Order of the state realization is a sensible measure of complexity of the state represen-
tation, and there is a well-defined minimal order of any realization consistent with a
given transfer function; this minimal order is equal to the Smith-McMillian degree of
the transfer function,

3. Ideas of controllability and observability of a state realization characterize important
properties of the realization, and any minimal realization is both controllable and
observable.

In a similar way, introducing partial structure representations impacts a variety of concepts
in systems theory, including realization, minimality, and model reduction.
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Realization The definition of partial structure representations enrich the kinds of real-
ization questions one may consider. In the previous section, we demonstrated that partial
structure representations of a system are generally more informative than its transfer function
but less informative than its state realization. Thus, two classes of representation questions
emerge: reconstruction problems and structure realization problems (Figure 30).

Figure 30: Partial structure representations introduce new classes of realization problems:
reconstruction and structure realization. These problems are distinct from identification,
and each depends on the type of partial structure representation considered.

Reconstruction problems consider the construction of a partial structure representation of
a system given its transfer function. Because partial structure representations are generally
more informative than a transfer function, these problems are ill-posed–like the classical
realization problem. Nevertheless, one may consider algorithms for generating canonical
representations, or one may characterize the additional information about a system–beyond
knowledge of its transfer function–that one would require in order to specify one of its
partial structure representations. In particular, we may consider two types of reconstruction
problems:

1. Signal Structure Reconstruction: Given a transfer function G(s) with its associ-
ated zero-pattern structure Z, find a signal structure, W, with dynamical structure
function (Q,P ) as in Equation (60) such that G = (I −Q)−1P ,

2. Subsystem Structure Reconstruction: Given a transfer function G(s) with its
associated zero-pattern structure Z, find a subsystem structure, S, with structured
LFT (N, S) as in Equation (54) such that G = (I − SK)−1SL.

Signal structure reconstruction is also called network reconstruction, particularly in systems
biology where it plays a central role. There, the objective is to measure fluctuations of various
proteins, or other chemical species, in response to particular perturbations of a biochemical
system, and then infer causal dependencies among these species [78, 79, 76, 71, 80, 81].

Structure realization problems then consider the construction of a state space model,
possibly generalized to include auxiliary variables as necessary, consistent with a given partial
structure representation of a system. Like the classical realization problem or reconstruction
problems, these problems are also ill-posed since there are typically many state realizations
of a given partial structure representation of a system. Also, like reconstruction problems,
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these realization problems can be categorized in two distinct classes, depending on the type
of partial structure representation that is given:

3. Signal Structure Realization: Given a system G with signal structure W and
associated dynamical structure function (Q,P ), find a state space model (A,B,C,D)
consistent with (Q,P ), i.e. such that Equations (57-60) hold,

4. Subsystem Structure Realization: Given a system G with subsystem structure S
and associated structured (N, S) (recorded in the LFT representation F(N, S)), find
a generalized state space model of the form of Equation (48) consistent with (N, S).

Signal structure realization may sometimes be called network realization, consistent with the
nomenclature for signal structure reconstruction.

Note that all the reconstruction and structure realization problems here are distinct from
identification problems, just as classical realization is different from identification. For the
systems considered here, identification refers to the use of input-output data (and no other
information about a system) to choose a representation that best describes the data in some
appropriate sense. Because input-output data only characterizes the input-output map of a
system, identification can at best characterize the system’s transfer function; no information
about structure, beyond the zero-pattern of the transfer function, is available in such data.
In spite of this distinction, however, it is not uncommon for reconstruction problems to be
called structure identification problems. Nevertheless, one may expose such problems as the
concatenation of an identification and a reconstruction problem and precisely characterize
the extra information needed to identify such structure by carefully analyzing the relevant
reconstruction problem, independent of the particular identification technique [71, 78].

Minimality Just as partial structure representations enrich the classical realization prob-
lem, they also impact the way we think about minimality. Certainly the idea of a minimal
complexity representation is relevant for each of the four problems listed above, but clearly
the relevant notion of complexity may be different depending on the representation. We
consider each situation as follows:

1. Minimal Signal Structure Reconstruction: In this situation one needs to consider
how to measure the complexity of a system’s signal structure, W, or its associated
dynamical structure function, (Q,P ). Some choices one may consider could be the
number of edges in W, the maximal order of any element in (Q,P ), or the maximal
order of any path from any input ui to any output yj. The problem would then be to
find a minimal complexity signal structure consistent with a given transfer function.

2. Minimal Subsystem Structure Reconstruction: In this situation one needs to
consider how to measure the complexity of a system’s subsystem structure, S, or its
associated structured LFT, (N, S). One notion could be to measure complexity by the
number of distinct subsystems; the problem would then be to find the minimal com-
plexity subsystem structure representation consistent with a given transfer function.
Another notion could be the number of non-zero entries in the S matrix, where (N, S)
denote the the LFT associated with the subsystem structure. Using this measure,
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a single subsystem block with no zero entries would be considered a more complex
representation than a subsystem structure with a large number of distinct, albeit in-
terconnected, subsystems.

3. Minimal Signal Structure Realization: In this situation one needs to consider
how to measure the complexity of a system’s zero-intricacy state realization, from
which signal structure is derived. The obvious choice would be to use the order of the
realization as a natural measure of complexity, and the problem would then become
to find the minimal order state realization consistent with a given signal structure, W,
or, equivalently, with its associated dynamical structure function, (Q,P ). Note that
this minimal order is guaranteed to be finite (for the systems considered here) and can
easily be shown to be greater or equal to the Smith-McMillian degree of the transfer
function specified by the signal structure; we call this number the structural degree of
the signal structure [72].

4. Minimal Subsystem Structure Realization: In this situation one needs to con-
sider how to measure the complexity of a generalized state realization in the presence
of auxiliary variables. Both the order and the intricacy of the realization offer some
perspective of its complexity, but one needs to consider how they each contribute to
the overall complexity of the realization. The problem would then be to find a minimal
complexity generalized state realization consistent with a given subsystem structure.

These various problems demand new ideas for thinking about the complexity of a sys-
tem’s representation, especially that of a partial structure representation. These new ideas
about complexity, in turn, introduce opportunities for characterizing minimality of a rep-
resentation in terms that add insight to our understanding of the relationship between a
system’s behavior and its structure, much as controllability and observability characterize
classical notions of minimality in a system’s state realization. Besides suggesting the need for
a characterization of minimality, however, these ideas also impact notions of approximation
and how we think about model reduction.

Model Reduction Each of the reconstruction and structure realization problems de-
scribed above have associated with them not only a minimal-representation version of the
problem, but also an approximate-representation version of the problem. The minimal-
representation versions of these problems, as described above, seek to construct a represen-
tation of minimal complexity in the targeted class that is nevertheless consistent with the
system description provided. Similarly, approximate-representation versions of these prob-
lems seek to construct a representation in the targeted class that has a lower complexity
than the minimal complexity necessary to deliver consistency with the system description
provided. As a result, consistency with the given system description can not be achieved, so
measures of approximation become necessary to sensibly discuss a “best” representation of
the specified complexity.

For example, associated with the classical realization problem is the standard model
reduction problem. In this situation, a transfer function is specified, and one would like to
construct a state realization with a complexity that is lower than that which is necessary
(for such a realization to be consistent with the given transfer function) that nevertheless

71
APPROVED FOR PUBLIC RELEASE:  DISTRIBUTION UNLIMITED



“best” approximates it. Note that the appropriate notion of complexity depends on the target
representation class; here, the target representation class is the set of state realizations, so the
appropriate notion of complexity is model order. Likewise, note that the appropriate notion
of approximation depends on the type of system representation that is initially provided;
here, a transfer function is provided, so an appropriate measure of approximation could be
an induced norm, such as H∞. Thus, one could measure the quality of an approximation
by measuring the induced norm of the error between the given transfer function and that
specified by the approximate state realization. Note that since the H∞ model reduction
problem remains open, many alternative measures and approaches have been suggested.
In any event, because the specified system description is a transfer function, the resulting
measure of approximation is typically one that either directly or indirectly measures the
difference in input-output dynamic behavior between the approximate model and the given
system description; the focus is on dynamics, not system structure, when considering notions
of approximation in the standard model reduction problem.

Similarly, there is an appropriate reduction problem associated with each of the minimal
reconstruction and minimal structure realization problems described above. Like standard
model reduction, the appropriate notion of complexity is characterized by the class of target
representations, while the appropriate measure of approximation depends on the system
representation that is initially provided. To make these ideas more concrete, we discuss each
of the problems individually:

1. Approximate Signal Structure Reconstruction: In this situation one would like
to find a signal structure representation with lower complexity e.g. fewer number of
edges, etc. than the minimal level of complexity necessary to specify a given transfer
function. When using the number of edges as a complexity measure, this problem
may be interpreted as trying to restrict the number of communication links between
individual computation nodes in a distributed system while approximating some de-
sired global dynamic. The appropriate measure of approximation, then, is any measure
that sensibly compares the desired transfer function from that specified by the reduced
signal structure, such as H∞.

2. Approximate Subsystem Structure Reconstruction: In this situation one would
like to find a subsystem structure representation with lower complexity than the mini-
mal level of complexity necessary to specify a given transfer function. If one considers
the number of subsystems as the measure of complexity, then this problem is trivial
since any transfer function is consistent with a subsystem structure with a single sub-
system. If one measures complexity by the number of non-zero entries in the S matrix,
where (N, S) denote the the LFT associated with the subsystem structure, then it
appears likely that one could often formulate a meaningful approximation problem.

Unlike these approximate reconstruction problems, approximate realization problems
may have dual relevant measures of approximation, since having an initial partial struc-
ture representation of a system also always specifies its transfer function. Measuring the
similarity between transfer functions determines the degree to which a lower order system
approximates the dynamics of a given system, while measuring the similarity between partial
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structure representations determines the degree to which a lower order system approximates
the structure of a given system.

3. Approximate Signal Structure Realization: In this situation one would like to
find a state realization with a model complexity that is lower than the minimal com-
plexity necessary to specify a given signal structure. Typically the complexity of a
generalized state realization would be measured by both the order and intricacy of the
realization. Since signal structure only depends on the zero intricacy realization of a
system, however, a minimal complexity realization will always have zero intricacy; thus
model order is the only relevant notion of complexity. Moreover, since the structural
degree of a particular signal structure may be strictly greater than the Smith-McMillian
degree of the transfer function it specifies, a few distinct kinds of approximation prob-
lems emerge: structural approximation and dual approximation (Figure 31).

(a) Structural Approximation: When the order of the approximation is less than
the structural degree of the given signal structure but greater than the Smith-
McMillian degree of the associated transfer function, the resulting approximation
can specify the given transfer function exactly, even though its signal structure
only approximates that of the given system. Note that the sense in which simi-
larity in signal structure should be measured is an area of on-going research.

(b) Dual Approximation: When the order of the approximation is less than the
Smith-McMillian degree of the transfer function specified by the given signal struc-
ture, then it will represent neither the structure nor the dynamics of the given
system exactly.

4. Approximate Subsystem Structure Realization: In this situation one would like
to find a generalized state realization with a model complexity that is lower than the
minimal complexity necessary to specify a given subsystem structure. Here, complex-
ity of a generalized state realization is measured both in terms of intricacy and order
since intricacy of a realization directly impacts the number of admissible subsystem
blocks (see Figure 23) while order impacts the ability of the realization to approximate
the transfer function specified by the given subsystem structure. As a result, three dis-
tinct approximation problems emerge to complement subsystem structure realization:
Structure-Preserving Model Reduction, Subsystem Structure Approximation, Subsys-
tem Dual Approximation (Figure 32).

(a) Structure-Preserving Model Reduction: When the intricacy of an approx-
imation is high enough, the subsystem structure of a system can be preserved
while its dynamic behavior is approximated by lower-order systems. A naive ap-
proach to such reduction would be to reduce the order of various subsystems.
However, even when each subsystem is well approximated, the dynamic behavior
of the overall interconnection may be very different from the original system. As a
result, a rich literature has developed in this area that develops sophisticated tech-
niques for approximating the dynamics of the closed-loop, interconnected system
while preserving its subsystem structure [82, 83].
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Figure 31: Approximate signal structure realization leads to two distinct types of reduction
problems. Structural approximation exactly realizes the dynamics of a given signal structure
while only approximating its structure; dual approximation captures neither the dynamics
nor the structure of a given signal structure exactly.

(b) Subsystem Structure Approximation: When the order of an approximation
is high enough, the dynamic behavior of a system can be preserved while is subsys-
tem structure is approximated by lower-intricacy realizations. The sense in which
similarity of subsystem structure should be measured remains an open topic for
research.

(c) Subsystem Dual Approximation: When both the order and the intricacy of
an approximation are lower than the minimal values necessary to realize a given
subsystem structure and the transfer function it specifies, then the objective of
the reduction problem is to find the realization of the specified complexity that
best approximates the structure and dynamics of the given system.

The introduction of partial structure representations suggests a number of new prob-
lems in systems theory. These problems include new classes of realization problems, called
reconstruction and structural realization problems, as well as a number of new reduction
problems. Each of these problems differ depending on the partial structure representation
one considers, and a number of research issues remain to properly formulate most of them.
The overview offered here is merely meant to give a perspective of the landscape of problems
that emerges with the introduction of partial structure representations.
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Figure 32: Approximate subsystem structure realization leads to three distinct types of
reduction problems: 1) Structure-preserving model reduction preserves the subsystem struc-
ture of a given system while approximating its dynamic behavior, 2) Subsystem structure
approximation preserves the dynamic behavior but approximates the subsystem structure,
and 3) Subsystem dual approximation captures neither the structure nor the dynamic be-
havior of a system described by a particular subsystem structure.

75
APPROVED FOR PUBLIC RELEASE:  DISTRIBUTION UNLIMITED



7.5.5 Summary

This section introduced the idea of a system’s complete computational structure as a base-
line for comparing simplified representations. Although closely aligned with a system’s state
space realization, we demonstrated the need for auxiliary variables to encode information
about a system’s admissible subsystem structure. This results in a “generalized” state de-
scription that is a differential algebraic system with differentiation index zero, and the num-
ber of auxiliary variables becomes an additional measure of complexity (besides model order)
that we call intricacy. This generalized state representation, and its associated graphical rep-
resentation, is the system’s complete computational structure.

Partial structure representations were then introduced as a means for simplifying a sys-
tem’s structural description while retaining a complete representation of its input-output dy-
namic behavior. These included subsystem structure, signal structure, and the zero-pattern
of the system’s transfer function.

Subsystem structure was first introduced as the most refined view of the interconnection
of a system’s legitimate subsystems. This description is represented as the lower linear
fractional transformation of a static interconnection matrix N with a block diagonal operator
S. It’s graphical representation is a block diagram, like the system’s complete computational
structure, that is a condensation graph with respect to a meaningful partition of the system’s
states.

Signal structure, on the other hand, is a signal flow diagram of the causal dependen-
cies among manifest variables given by the dynamical structure function of the system. We
demonstrated that systems may exhibit extremely structured behavior in the signal struc-
ture sense while having no apparent structure in the subsystem or computational structure
sense. Moreover, the transformations between manifest variables, represented as edges in the
signal structure graph, do not necessarily partition the system states, as do the nodes of the
subsystem structure. This fact implies that the minimal order to realize a particular signal
structure may be, in fact, higher than the minimal order necessary to realize the transfer
function specified by the given signal structure.

Finally, the weakest notion of structure is the pattern of zero entries in the system’s trans-
fer function matrix, which graphically also becomes a signal flow graph like signal structure.
We demonstrated that this representation is very weak, reminding readers that a diagonal
transfer function matrix, for example, does not imply that even a minimal realization of the
system is necessarily decoupled. Thus, this notion of structure really only makes a statement
about the closed-loop dependencies of inputs on outputs of the system.

These representations were then shown to contain differing levels of structural infor-
mation about a system. In particular, it was shown that the complete computational struc-
ture uniquely specifies both the subsystem and signal structure of a system, and that either
of these partial structure representations uniquely specify the transfer function (and thus
its associated zero-pattern structure) of the system. Nevertheless, the relationship between
subsystem and signal structure is less definitive, as we demonstrated that two realizations
of the same system may share subsystem structure but have different signal structures, or,
conversely, two realization of the same system may share signal structure but have differ-
ent subsystem structures. These different representations simply appear to offer different
perspectives of the system’s structural properties.
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We then surveyed the landscape of new problems in systems theory that arise when con-
sidering these partial structure representations. In particular, we showed that the standard
realization problem now becomes two types of problems, a reconstruction problem, where a
transfer function is given and one would like to determine a partial structure representation
that is consistent with it, and a structure realization problem, where a partial structure
representation is given and one would like to find a generalized state realizations that is
consistent with it. Minimal versions of these problems are obtained if one can define a
sensible notion of complexity of each kind of representation, and various suggestions were
offered. Associated approximation, or model reduction problems were then characterized,
where the target representation is simpler than the minimal complexity necessary to yield a
representation that is consistent with the given model or description of the system. Here we
note that the model reduction problems begin to consider structure approximation as well as
approximation of the system’s dynamic behavior, leading to a variety of new problems one
may consider. It is out hope that many of these problems will be addressed in the coming
years, leading to a more thorough and complete understanding of the meaning of structure
and its relationship to the behavior of interconnected dynamic systems.

7.6 Vulnerable Links and Secure Architectures in the Stabilization
of Networks of Controlled Dynamical Systems

The Stuxnet virus attacked an Iranian nuclear power plant in 2010 and caused the centrifuge’s
rotors to malfunction [98]. It gained much news coverage as the first virus attack on industrial
systems. Although no serious damage was done, it has highlighted the necessity of improving
our understanding of the security of control systems.

Researchers have predicted that attacks on industrial control systems would increase
[86, 84]. As the systems are becoming more networked, securing them has become much
harder and attacking them has gotten easier. In the past, securing the physical plants was
enough to secure the system, but now in the networked architecture the communication
channels have to be secured too. This is almost impossible to achieve, especially when
these systems are being connected to the Internet, with connection features as powerful
as remote access to the control centers. Regardless of the improvement in the industry’s
secure communications, cryptography, etc., a simple human error like someone forgetting to
change a default password on their account could give an attacker complete access to the
resources necessary to carry out a complicated attack. Although the security risks are real,
these systems being less networked in the future is highly unlikely because of the usability
advantages that a networked setting offers.

As a result, considering the security of networked control systems has become very im-
portant. A good design should make detecting attacks easy, help understand the effects of
an attack, make it difficult to execute an attack, and finally minimize the consequences if an
attack is successful. This section will contribute in designing more secure networked systems
by identifying conditions when a link is completely secure against attacks that attempt to
destabilize the system. Our result also gives a measure of link vulnerability, which corre-
sponds to the minimum size of a destabilizing attack on the link. This can be a useful tool
to understand the security of a networked system.
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In this section, we view security as a robustness issue and focus on making systems robust
against perturbations on a single communication channel. First, we give a summary of the
types of attacks that a system might suffer. Then, in Section 7.6.4 we present our main
result. Finally in Section 7.6.5 we give some examples to illustrate the applications of our
theory.

7.6.1 Attack Models

In the literature, attacks on control systems have been classified into two types: denial
of service attacks, when the attacker jams a channel in order to destabilize the system,
and deception attacks, when the attack adds perturbations on particular links in order to
compromises the reliability of the controller’s state estimates [96, 85]. We consider a hybrid
attack model where the attacker adds perturbations to the channels, not just jam them, in
order to destabilize the system. We call this type of attack a destabilizing attack.

Denial of Service (DoS) Attack Denial of service attacks prevent signals from reaching
their intended destination. This is probably the easiest and most common attack, and it is
modeled as removal of an edge in an interconnected structure. It might be done by jam-
ming the communication channel, disrupting the transmitter/receiver, changing the routing
protocol, saturating the receiver with extraneous signals, etc. The attacker’s intent of such
an attack could be to degrade the system performance or to completely destabilize it. [94]
shows that performance of networked control systems could decrease significantly under a
DoS attack. [96] gives a method to find an optimal controller that minimizes the effect of
such an attack on linear control systems.

In [97], the authors study whether a DoS attack on certain links can make the system
unreachable or uncontrollable. They also develop graph theoretic algorithms to identify the
minimal number of edges which are necessary for preserving controllability and observability.

Deception Attack The goal of a deception attack is to change the state estimates com-
puted by a model-based controller. This type of attack is modeled as a stable additive
perturbation to an edge in the network. All stabilizing controllers make the closed loop
system stable, hence, a stabilizing controller is necessarily stabilizable from the plant. So, if
at attacker gains access to the communication channel between the plant and the controller,
state estimates of a model-based controller can be altered. To prevent this, many real sys-
tems such as power systems, sensor networks, etc., are equipped with a Bad Data Detector
(BDD) [99, 92, 100]. A BDD, using the model of the plant, detects deviation of the state es-
timates from the expected and raises an alarm to notify the human operator. Because of the
presence of measurement noise, this deviation is never zero, so the BDD ignores deviations
that are smaller than a specified threshold. Hence, in the presence of BDDs, the attack has
to change the state estimates without increasing the chance of raising an alarm.

In [99] the authors study this kind of attack in the context of a power system. They
shown that it is in fact possible for an attacker to change the state estimates to a specific
value without increasing the chance of being detected. [100] studies a similar problem in the
scenario of a wireless sensor networks. It maps an approximation of the set of all possible
values the attacker could drive the estimates to.
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[92] studies a slightly different problem. Here, the goal of the attacker is to change the
estimate of one of the states without increasing the chance of being detected. The authors
recognize that while doing this the attacker might want to use the fewest channels possible
or might try to keep the magnitude of the attack signal small. For each type of attack, the
authors then give a formulation of a security index of the system.

Destabilizing Attack Like deception attacks, these attacks effectively arise as an additive
perturbation on a link in the system interconnection structure. Unlike deception attacks,
however, they seek to destabilize the system rather than simply move the system state to
a desired value without being detected. BDDs are clearly capable of detecting the destabi-
lization resulting from such attacks, nevertheless serious damage and even complete plant
shut-down may result by the time system operators are able to do anything about it.

A rich literature in systems and control theory explores the destabilization of systems due
to additive perturbations, see for example [91] and the references therein. Security analysis
of destabilizing attacks thus appears to be a robustness problem with respect to certain
classes of perturbations. Indeed, we adopt this point of view, and consider security problems
to be essentially robustness problems of various types.

The contribution of this work, then, applied to this class of attacks, is in the solution
of a certain class of robustness problems over a particular kind of link model–corresponding
to logical, rather than the physical, links of a system–and with respect to a specific class
of perturbations. Unlike standard robustness measures that generally consider destabilizing
perturbations acting over all channels and nodes of a system, here we restrict our attention
specifically to perturbations that disrupt a single link in the system’s signal structure. Our
analysis then considers such single-link perturbations over all possible system links. In the
next section we explore our link model in detail.

7.6.2 Link Models

The destabilizing attacks considered here are additive perturbations acting on a single link in
a system’s logical interconnection structure. There are many characterizations of a system’s
structure, see for example [88, 89, 87]. One characterization would consider the intercon-
nection structure among subsystems. This definition of structure, also called the system’s
subsystem structure, would represent the physical interconnection between physical compo-
nents of a particular networked system. Under this notion of structure, a link would represent
the signal passing between two subsystem nodes within the subsystem interconnection ar-
chitecture. In contrast to the subsystem structure, this work considers another definition of
system structure and, consequently, a different notion of a system link.

In this work, we consider a partition on signals of the system into two categories: exposed
signals and hidden signals. The logical interconnection structure, or architecture–also called
the system’s signal structure–is the causal relationship between exposed signals in the system.
In this definition of structure, a link is a system describing the causal dependency between
two exposed signal nodes of the logical interconnection architecture.

Some important consequences of this definition of link include the fact that a link may
represent a very indirect and complicated pathway–through various hidden signals that may
be components of other links in the system. Thus a link is associated with a particular
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set of dynamics–a system–that characterizes how the input signal is transformed into the
output signal. The fact that hidden signals may be shard between links, however, is an
important distinction between signal and subsystem interconnection structures. Note that
a state of one subsystem, interconnected with others in a subsystem architecture (such
as a standard feedback interconnection between two blocks), is never shared with other
subsystems; the subsystem architecture effectively partitions the states of the networked
system. In contrast, states on the links of the signal structure may, in fact, be shared with
those of other links. This degree of abstraction is important for security problems because
an additive perturbation on a link of the signal structure does not represent the corruption
of a particular channel, as it would in the subsystem structure, but rather the idea that an
attacker infiltrated a particular dependency between specific manifest variables.

The next section provides some background on Dynamical Structure Functions (DSF),
which are used to represent the signal structure of a system. The DSF is a system represen-
tation that describes more structure, in the logical interconnection sense, than the transfer
function provides, but less than the state space realization would reveal. Specifically, the
DSF describes exactly the causal dependencies between manifest variables without offering
any indication of the structure relating hidden variables. As a result, although every state
space realization specifies a unique DSF, and every DSF specifies a unique transfer function,
there are many DSF architectures consistent with any specific transfer function, and many
state space realizations consistent with any specific DSF.

7.6.3 Background: Dynamical Structure Function

Before developing the main theorem, we will present a concise derivation of the dynamical
structure function, and explain its relevance to the security of a networked system. For a
complete derivation and results on different representations of structure see [87, 88].

Let us consider a state-space LTI system
[

ż1
ż2

]

=

[

Ā11 Ā12

Ā21 Ā22

] [

z1
z2

]

+

[

B̄1

B̄2

]

u (72)

y =
[

C̄1 C̄2

]

[

z1
z2

]

,

where
[

C̄1 C̄2

]

has full row rank. This system can be transformed to:

[

ẏ
ẋ

]

=

[

A11 A12

A21 A22

] [

y
x

]

+

[

B1

B2

]

u (73)

y =
[

I 0
]

[

y
x

]

,

Here y are the states that are measured, and x are the hidden states. Now, taking Laplace
Transforms of the signals in (73), we get

[

sY
sX

]

=

[

A11 A12

A21 A22

] [

Y
X

]

+

[

B1

B2

]

U. (74)
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Solving for X in the second equation of 74 gives

X = (sI − A22)
−1A21Y + (sI − A22)

−1B2U

Substituting into the first equation of (74) we get,

sY = WY + V U,

where W = A11+A12(sI−A22)−1A21 and V = A12(sI−A22)−1B2+B1. Let D be a diagonal
matrix with the diagonal entries of W . Then,

(sI −D)Y = (W −D)Y + V U.

Now we can rewrite this equation as,

Y = QY + PU, (75)

where
Q = (sI −D)−1(W −D)

and
P = (sI −D)−1V.

The matrix Q is a matrix of transfer functions from Yi to Yj, i )= j, or relating each measured
signal to the other measured signals. Note that Q is zero on the diagonal and either zero or
a strictly proper transfer function on the off diagonal. The matrix P is a matrix of zeros or
strictly proper transfer functions from each input to each output without depending on any
additional measured states. Together, the pair (Q(s), P (s)) is called the dynamical structure
function for system (72).

The transfer function matrix for this system is given by

G = (I −Q)−1P = C(sI − A)−1B.

Hence, Gij is the closed loop transfer function from input j to state i. In this section, we
will also refer to the closed loop transfer function between states. A transfer function from
state j to state i is represented by Hij , where

H = (I −Q)−1.

Note that the transfer function from a state to an input is always zero.

Definition 11. Given a system 72 with signal structure characterized by the dynamical
structure function (P,Q), a link (i, j) of the system corresponds to any nonzero entry in P
or Q.

Note that P gives the links from the inputs to the measured states, and Q gives the links
that represent the dependencies between the measured states. The next section will introduce
the notion of vulnerability and characterize vulnerable links in the system’s architecture
characterized by (P,Q).
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Figure 33: The system with the perturbation ∆. Black arrows indicate secure links, while
blue arrows indicate vulnerable links.

7.6.4 Vulnerable Links

In this work, vulnerability refers to the destabilization of a system resulting from the cor-
ruption of a single link in its signal architecture. We begin with a definition of a vulnerable
link.

Definition 12. Given a system 72 with signal structure characterized by the dynamical struc-
ture function (P,Q), a link in (P,Q) is called vulnerable if there exists a stable perturbation
on the link that makes the system unstable.

Example 7. Let us consider a system with

P =

[ 1
s+2 0
0 1

s+2

]

, and Q =

[

0 1
s+2

1
s+2 0

]

.

This system is stable because the transfer function,

G =
1

s2 + 4s+ 3

[

s+ 2 1
1 s + 2

]

Now let us add a perturbation ∆ = 3
s+2 to the link Q12 as shown in Figure 33. The resulting

transfer function is

Ḡ =
1

s(s+ 4)

[

s + 2 1
4 s+ 2

]

,

which is unstable. Hence the link Q12 is a vulnerable link. Similarly, it can be shown that
Q21 is vulnerable, although neither P11 nor P22 are vulnerable.

Condition for Vulnerability Given that an attacker has the knowledge of the dynam-
ical structure function representation of a system, we will derive a necessary and sufficient
condition for a link to be vulnerable.

Theorem 5. Let us consider a stable system (P,Q). There exists a stable additive pertur-
bation ∆ on a link from node i to node j, either in P or Q, that makes the system unstable
if and only if the closed loop transfer function from node j to i is nonzero.
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Proof. This is true because the transfer function from the states to the input is always
zero.

Corollary 3. If Tij is nonzero, there exists a perturbation ∆ ∈ R that destabilizes the system
in Figure 35.

Proof. Let ∆ ∈ R, lij = Nl

Dl
. Thus, δn

δd
= ∆Dl+Nl

Dl
, and the polynomial in (77) becomes

DlD − N(Dl∆ + Nl). We can see that at least one of the terms in this polynomial can be
zeroed out by choosing appropriate ∆, making the polynomial unstable.

Corollary 4. Let us consider a stable system,

ẋ = Ax+ Iu, (78)

y = Ix,

where A ∈ Rn×n and let G = (sI − A)−1. There exists a perturbation K = ∆eieTj ,∆ ∈ R,
such that (A+K) is not Hurwitz, if and only if the transfer function from input ui to output
yj, Gji, is nonzero.

Proof. If the perturbation is on the diagonal entry of A, then it is easy to see that a desta-
bilizing perturbation always exists and Gii is never zero. Let D = diag(A11, A22, ..., Ann).
The dynamical structure function of the system is given by P = (sI − D)−1 and Q =
(sI − D)−1(A − D). Any perturbation K = ∆eieTj , i )= j effects only the link Qij . Hence,
the perturbation can make the system unstable if and only if the transfer function Hji is
nonzero. Also, the diagonal entries of P are nonzero, and G = HP . Thus, the transfer
function Hij is nonzero if and only if Gji is nonzero.

Example 8. Let us consider a system of the form 78 with

A =









−1 0 −4 3
2 −2 0 0
3 0 −2 −4
0 3 −2 −5









.

Here the eigenvalue of A are σ = {−1.5000+3.4278j,−1.5000−3.4278j,−6.7016,−0.2984}.
Hence, the system is stable. In this system, the link from x4 to x1 is not vulnerable because
G41 = 0. Notice that this example is not a trivial example, like a diagonal or a triangular
system, since there are cycles that contain both nodes x1 and x4.

Corollary 5. Let A ∈ Rn×n. A perturbation on the (i, j)th entry of A changes its eigenvalues
if and only if the Gji )= 0, where G = (sI − A)−1 is the transfer function matrix i.e. the
(i, j) minor of (sI − A) is nonzero.

Proof. Take the system from Corollary 4. We can see that a perturbation on the (i, j)th

entry has no effect on the system if Gij = 0. Also, if Gji )= 0, the perturbation forms a
closed loop system, such as the one given in Figure 35, in which case ∆ definitely changes
the poles of the system.

If we take the A matrix from Example 8, note that its eigenvalues stay unchanged for
any perturbation on the (1, 4)th entry.
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Figure 36: A system with a secure link in a cycle. Black arrows represent the secure links.

Structure and Vulnerability To perform the vulnerability analysis of a system, we
assume that the attacker can only modify existing links and cannot create new links. With
this assumption, we can see that systems where the output nodes do not form a cycle are
always secure, because in such a case the nodes can be permuted to obtain a triangular Q
matrix. A triangular Q matrix gives a triangular H , and by applying Theorem 5 we can see
that all the existing links are secure. Note that secure links doesn’t always mean they are
from a triangular system. For example, the link Q14 is secure in the system given in Figure
36, which is the signal structure architecture of the state-space system in Example 8.

Noting that certain graphical structures result in secure links begs the question of whether
there are particular dynamics that contribute to secure or vulnerable links in the system’s
architecture. The following theorem answers this question.

Theorem 6. Every transfer function G has a completely secure architecture (P̄ , Q̄).

Proof. For any transfer function G, note that (P = G,Q = 0) is an admissible Dynamical
Structure Function since G = (I − 0)−1G. From Corollary 1, we see that none of the links
in P are vulnerable, and since Q has no links, the system is secure.

This result shows that the vulnerability of a system is structure dependent and not a
function of the system dynamics. This fact highlights one difference between the vulnerabil-
ity, which depends on the system structure and not the dynamics, and the robustness, which
depends on the dynamics and not the system structure.

Measure of Vulnerability Feedback is very common in both natural and engineered
systems. Nevertheless, such structures usually generate vulnerable links. Thus, a measure
of vulnerability is essential to understand the security of the system.

Given a signal architecture (P,Q) with associated closed loop transfer function T , the
vulnerability of link (i, j) is given by

vji =
1

||Tij||∞
, (79)

which is the smallest perturbation required on link (i, j) to destabilize the system. Since all
the links in P are secure, we only consider the links in Q while computing the vulnerability,
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hence, T = H . The vulnerability of the system is given by

V = min
(i,j)∈Q

vji (80)

= min
(i,j)∈Q

1

||Tij||∞
(81)

This measure allows us to associate a size of the smallest destabilizing perturbation with
every link in the system architecture. Secure links thus have a vulnerability of∞. Note that
V , the system vulnerability, is different than (and not smaller than) the size of the smallest
destabilizing perturbation for the system, since link perturbations are restricted to act on a
single link only.

7.6.5 Numerical Example

Let us consider a system with the architecture given in Figure 37a where,

P =





1
s+1 0 0
0 1

s+1 0
0 0 1

s+1





and

Q =





0 0 1
s+1

1
s+2 0 0
0 1

s+3 0



 .

The transfer function matrix for the system is given by

G =







s3+6s2+11s+6
d(s)

s+2
d(s)

s2+5s+6
d(s)

s2+4s+3
d(s)

s3+6s2+11s+6
d(s)

s+3
d(s)

s+1
d(s)

s2+3s+2
d(s)

s3+6s2+11s+6
d(s)






,

where d(s) = s4 + 7s3 + 17s2 + 16s + 5. The gain of this system is given by ||G||∞ = 2.4.
Hence, by small gain theorem, a perturbation of gain larger than 0.42 could destabilize the
system.

Let H = (I−Q)−1 represent the transfer function between the measured states yi. Since
the links in P are not vulnerable, we consider the perturbations on the links in Q which are
the links (y1, y2), (y2, y3), and (y3, y1). To compute the vulnerability of these links we need
the following transfer functions:

H12 =
s + 2

s3 + 6s2 + 11s+ 5

H23 =
s + 3

s3 + 6s2 + 11s+ 5

H31 =
s+ 1

s3 + 6s2 + 11s+ 5
.

For this system v12 = ∆12 = 2.5, v23 = ∆23 = 5
3 , and v31 = ∆31 = 5. Hence, the smallest

perturbation on a single link that can destabilize this system must have a gain of 1.67.
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(a) Vulnerable architecture (b) Completely secure architecture

Figure 37: Vulnerable and secure architectures for the same transfer function. Black links
are secure, vulnerable links are colored blue, yellow, and red in the increasing order of their
vulnerability.

This system can also be implemented as shown in Figure 37b, where P̄ = G. This is
one of the secure implementations of the system in Figure 37a. From this example we thus
observe the following:

• The same transfer function can exhibit both vulnerable and secure architectures,

• System robustness, characterized by the size of the smallest destabilizing perturbation
(0.42 in this example), is not equivalent to system vulnerability, characterized by the
size of the smallest destabilizing perturbation on a single link (about 1.67 in this
example),

• Only links in Q can be vulnerable.

7.6.6 Summary

This section explored the notion of a vulnerable link in a network of controlled linear dynam-
ical systems. The architecture of the system was characterized by its Dynamical Structure
Function, representing the logical interconnection structure of the system. Vunerability was
then defined as the size of the smallest destabilizing perturbation acting on a single link.
The main results of the section provided necessary and sufficient conditions for the vulner-
ability of a link and then demonstrated that any transfer function has a completely secure
architecture. This result highlights the idea that while robustness is a property of a system’s
dynamics, security (in the sense discussed here) is a property of its signal architecture. Fu-
ture work will explore parallel notions for subsystem interconnection structure of networked
systems.
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8 Conclusions

This work considered a new model for complex network environments and explored its ap-
plicability to wireless mesh networks and bio-chemical reaction networks. The new model
characterizes structure of a networked system in a novel way that does not attempt to parti-
tion every state variable of the system into well defined subsystems, resulting in a significant
reduction in the information load necessary to reconstruct the (new) network structure from
experimental data. Instead, the new model characterizes the structure of the network as
the dependency among manifest variables (i.e. those variables that are visible to the outside
world), and this structure can be discovered with O(n) experiments, where n is the number
of manifest variables (observed nodes). Moreover, algorithms for network reconstruction
were developed that apply to nonlinear systems near equilibrium with noisy measurements.
These “robust” reconstruction methods have been tested in-silico, and experiments to vali-
date them on both wireless mesh and bio-chemical reaction networks remain a goal for future
research.

Although the new network model can be applied directly to existing models of chemical
reaction kinetics, application to wireless mesh networks is less obvious. As a result, significant
efforts were made to model and understand the behavior of wireless mesh networks leveraging
the team’s varied expertise through the “network design cycle.” Following this process, we
introduced a new partial interference model and a new first principles model for wireless mesh
networks, used them to design novel rate control protocols, and then verified the improved
performance of these protocols through both simulation and experimental testing. Although
these models are not yet exactly the type of model needed for network reconstruction, they lay
the appropriate foundation for developing such a model. Our next steps will be to extend this
work to a model appropriate for network reconstruction in wireless mesh networks, and then
use this model to experimentally validate our reconstruction methods for these networked
systems.

The new network reconstruction model also enables a rigorous analysis of network vul-
nerabilities. Preliminary work has demonstrated that certain network links can exhibit
system-wide vulnerability, and corresponding analysis has demonstrated that every system
has a completely secure architecture. In practice this architecture may be unrealizable, since
feedback is often an essential part of networked systems, but these early results point to
the power of the new models in enabling a rigorous vulnerability analysis by exploring the
robustness of the closed-loop system. Future work will build on these results and continue to
explore security implications of network attacks. Ultimately, for example, we would like to
be able to exploit our network reconstruction technologies to detect intruders in our wireless
mesh networks and understand how to deploy specific topologies that minimizes security
risks of link-wise attacks.
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